_sg{UnderDefense

X ‘ CyberSecurity solutions protecting your business

/]

REST API
Penetration Testing Report

for

> | UNDER
332 | DEFeNSE

Executive summary

This report presents the results of the “Grey Box” penetration testing for [CLIENT] REST API.
The recommendations provided in this report structured to facilitate remediation of the
identified security risks. This document serves as a formal letter of attestation for the recent
[CLIENT] Crey Box REST API Penetration Testing.

Evaluation ratings compare information gathered during the course of the engagement to “best
in class” criteria for security standards. We believe that the statements made in this document
provide an accurate assessment of [CLIENT] current security as it relates to Web API
perimeter.

We highly recommend to review section of Summary of business risks and High-Level
Recommendations for better understanding of risks and discovered security issues.

Security

level

Web API perimeter Good

UnderDefense Grading Criteria:

Grade | Security Criteria Description
Excellent The security exceeds “Industry Best Practice” standards. The overall
posture was found to be excellent with only a few low-risk findings
identified.
Good The security meets with accepted standards for “Industry Best

Practice.” The overall posture was found to be strong with only a
handful of medium- and low- risk shortcomings identified.

C Fair Current solutions protect some areas of the enterprise from security
issues. Moderate changes are required to elevate the discussed areas
to “Industry Best Practice” standards

D Poor Significant security deficiencies exist. Immediate attention should be
given to the discussed issues to address exposures identified. Major
changes are required to elevate to “Industry Best Practice” standards.

F Inadequate Serious security deficiencies exist. Shortcomings were identified
throughout most or even all of the security controls examined.
Improving security will require a major allocation of resources.

N | UNDER
333 | DEFENSE

- CyberSecurity Solutions
Protecting your business

Assumptions & Constraints

As the environment changes, and new vulnerabilities and risks are discovered and made
public, an organization’s overall security posture will change. Such changes may affect the
validity of this letter. Therefore, the conclusion reached from our analysis only represents a
“snapshot” in time.

Objectives & Scope

Organization [CLIENT ORGANIZATION]
Audit type GCray Box REST API Penetration Testing
Asset URL m.examplel.com

[]

e m.example2.com
e m.example3.com
e example4.com

e example5.co.uk
e example6.com

e example7.com

Audit period Feb. 25 - Mar. 15, 2019

Consultants performed discovery process to gather information about the target and searched
for information disclosure vulnerabilities. With this data in hand, we conducted the bulk of the
testing manually, which consisted of input validation tests, impersonation (authentication and
authorization) tests, and session state management tests. The purpose of this penetration
testing is to illuminate security risks by leveraging weaknesses within the environment that lead
to the obtainment of unauthorized access and/or the retrieval of sensitive information. The
shortcomings identified during the assessment were used to formulate recommendations and
mitigation strategies for improving the overall security posture.

Results Overview

The test uncovered a few vulnerabilities that may cause sensitive data leakage, broken
confidentiality and integrity and availability of the resource.

Identified vulnerabilities are easily exploitable and the risk posed by these vulnerabilities can
cause damage to the application and company.

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

(

D

Vulnerabilities by severity

@ Critical @ High @ Medium @ Low @ Informational

Security experts performed manual security testing according to OWASP Web Application
Testing Methodology, which demonstrate the following results.

Severity Critical High Medium Low Informational
of issues 0] 0] 3 9 1
Severity scoring:
Critical - Immediate threat to key business processes.
High - Direct threat to key business processes.
e Medium - Indirect threat to key business processes or partial threat to business

processes.

e Low - No direct threat exists. Vulnerability may be exploited using other vulnerabilities.

e Informational - This finding does not indicate vulnerability, but states a comment that
notifies about design flaws and improper implementation that might cause a problem in
the long run.

Confidential 3

API Penetration Testing Report for [CLIENT] Revised 15.03.2019

N | UNDER
S35 | DEFENSE

- CyberSecurity Solutions

Protecting your business

Summary of business risks

Medium and low severity issues can lead to:

e Attacks on communication channels and as a result on sensitive data leakage and
possible modification, in other words it affects the integrity and confidentiality of data
transferred.

e Information leakage about system components which may be used by attackers for
further malicious actions.

e Attacks on old and not patched system components with bunch of publicly known
vulnerabilities.

e Enumerating existing users emails/usernames and brute forcing their passwords. Easy
access to their session after exploitation of high level risks.

e Combination of few issues can be used for successful realisation of attacks.

Informational severity issues do not carry direct threat but they can be used to gather useful
information for an attacker.

High-Level Recommendations

Taking into consideration all issues that have been discovered, we highly recommend to:

Conduct current vs. future IT/Security program review
Conduct Static code analysis for codebase
Establish Secure SDLC best practices, assign Security Engineer to a project to monthly
review code, conduct SAST & DAST security testing
Review Architecture of application
Deploy Web Application Firewall solution to detect any malicious manipulations
Continuously monitor logs for anomalies to detect abnormal behaviour and fraud
transactions. Dedicate security operations engineer to this task
e Implement Patch Management procedures for whole IT infrastructure and endpoints of
employees and developers
e Continuously Patch production and development environments and systems on regular
bases with latest releases and security updates
e Conduct annual Penetration test and quarterly Vulnerability Scanning against internal
and external environment
Develop and Conduct Security Awareness training for employees and developers
Develop Incident Response Plan in case of Data breach or security incidents
Analyse risks for key assets and resources
Update codebase to conduct verification and sanitization of user input on both, client
and server side
Use only encrypted channels for communications
Do not send any unnecessary data in requests and cookies
e Improve server and application configuration to meet security best practises

N | UNDER
333 | DEFENSE

~=> [CyberSecurity Solutions
Protecting your business

Performed tests

o All set of applicable OWASP Top 10 Security Threats
o All set of applicable SANS 25 Security Threats

Criteria Label Status

A1:2017-Injection Meets criteria

A2:2017-Broken Authentication

A3:2017-Sensitive Data Exposure

A4:2017-XL External Entities (XXE) Meets criteria

A5:2017-Broken Access Control Meets criteria

A6:2017-Security Misconfiguration

A7:2017-Cross-Site Scripting (XSS)

A8:2017-Insecure Deserialization Meets criteria

A9:2017-Using Components with Known Vulnerabilities

A10:2017-Insufficient Logging&Monitoring

Security tools used

Burp Suite Pro [Commercial Edition]
Nmap

TestSSL

SQLmap

Different Burp Suite plugins (Joseph, etc.)

Project limitations

The Grey Box assessment was conducted against production environment with all limitations, it
provides.

Confidential 5

API Penetration Testing Report for [CLIENT] Revised 15.03.2019

https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A2-Broken_Authentication
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10-2017_A4-XML_External_Entities_(XXE)
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_Deserialization
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A10-Insufficient_Logging%26Monitoring

N | UNDER
333 | DEFENSE

- CyberSecurity Solutions
Protecting your business

Methodology

Our Penetration Testing Methodology grounded on following guides and standards:

Penetration Testing Execution Standard

OWASP Top 10 Application Security Risks - 2017
OWASP Testing Guide

OWASP ASVS

Open Web Application Security Project (OWASP) is an industry initiative for web application
security. OWASP has identified the 10 most common attacks that succeed against web
applications. These comprise the OWASP Top 10.

Application penetration test includes all the items in the OWASP Top 10 and more. The
penetration tester remotely tries to compromise the OWASP Top 10 flaws. The flaws listed by
OWASP in its most recent Top 10 and the status of the application against those are depicted in
the table below.

http://www.pentest-standard.org/index.php/Main_Page
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=Main
https://www.owasp.org/index.php/Top_10_2013-Top_10

(

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

X

t

Findings Details

User enumeration

SEVERITY: Medium
LOCATION:

e /api/vl/ge/forgottenpasswords
ISSUE DESCRIPTION:

User enumeration is when a malicious actor can use brute-force to either guess or confirm
valid users in a system. User enumeration is often a web application vulnerability, though it can
also be found in any system that requires user authentication. Two of the most common areas
where user enumeration occurs are in a site's login page and its ‘Forgot Password' functionality.
We have been able to find user enumeration vulnerability on ‘Sign Up’, and ‘Forgot Password’
functionality which allows attackers to enumerate existing users.

PROOF OF VULNERABILITY:

User enumeration over forgottenpasswords API call on:

e m.examplel.com

® m.example2.com

e m.example3.com

e m.example4.com
Request:

POST /api/vl/ge/forgottenpasswords HTTP/1.1

marketCode: en

Content-Type: application/json

User-Agent: Mozilla/5.0 (iPhone; CPU iPhone 0S 9_1 like Mac OS X) AppleWebKit/601.1.46
(KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1
cache-control: no-cache

Accept: */*

Host: m.example2.com

Accept-Encoding: gzip, deflate

Content-Length: 140

Connection: close

"Identifier": "hackeri",
"ResetType": "SMS",
"Nationalld": "@as9aa@d596697",
"PhoneExtension": "+380",

N | UNDER
S35 | DEFENSE

- CyberSecurity Solutions

Protecting your business

"PhoneNumber": "2213"

If user exists we receive RESPONSE:

{"code":"E_FORGOTTENPASSWORDS_INVALIDCREDENTIALS"}

User enumeration on www.example7.com in /en/api/Authentication/Login API call (out of
scope item):

If password is invalid response looks like:

HTTP/1.1 200 0K
Cache-Control: no-cache,no-store, no-cache, must-revalidate, post-check=0, pre-check=0

{"Success":false, "Message":"InvalidCredentials", "UserNeedsToAcceptTerms":false, "Paramete
rs":null,"ActivityId":"5a836419-57b0-471f-9dd7-67c915b1963c","LastLoginDate" :null, "Statu
sCode":401}

If username is invalid response looks like:

HTTP/1.1 200 OK
Cache-Control: no-cache,no-store, no-cache, must-revalidate, post-check=0, pre-check=0

{"Success":false,"Message" : "UserStatusUnknown", "UserNeedsToAcceptTerms":false, "Parameter
s":null,"ActivityId":"6beee024-7363-4d53-8cb3-194f5837deb4", "LastLoginDate" :null, "Status
Code":404}

RECOMMENDATIONS:

Provide less verbose responses in the functionality. The server should return the same generic
messages regardless if the username/email address exists or not. A message such as ‘Further
instructions have been sent to your email address’ or similar. For more detailed information
please consider using the link below:
https://blog.rapid7.com/2017/06/15/about-user-enumeration/

https://blog.rapid7.com/2017/06/15/about-user-enumeration/

N | UNDER
332 | DEFENSE

~a=d B (yherSecurity Solutions
Protecting your business

Session token in local storage

SEVERITY: Medium
LOCATION:

htps://m.examplel.com/en
https://m.example2.com/en/
https://m.example3.com/en
https://www.m.example4.com
htps://www.m.example5.co.uk

ISSUE DESCRIPTION:

A JWT needs to be stored in a safe place inside the user's browser. If you store it inside
localStorage, it's accessible by any script inside your page (which is as bad as it sounds as an
XSS attack can let an external attacker get access to the token).

PROOF OF VULNERABILITY:

Session token in local storage:

authReducer KICAidXNIcklkljogljBhMmJmNDCSL. ..

RECOMMENDATIONS:

Don't store session token in local storage (or session storage). If any of the 3rd part scripts you
include in your page gets compromised, it can access all your users' tokens.

Confidential 9
API Penetration Testing Report for [CLIENT] Revised 15.03.2019

N | UNDER
333 | DEFENSE

- CyberSecurity Solutions
Protecting your business

Data Validation

SEVERITY: Medium
LOCATION:

e /api/vl/customerregistrationtokens
ISSUE DESCRIPTION:

The most common web application security weakness is the failure to properly validate input
from the client or environment. This weakness leads to almost all of the major vulnerabilities in
applications, such as Interpreter Injection, locale/Unicode attacks, file system attacks and
buffer overflows. Data from the client should never be trusted for the client has every
possibility to tamper with the data.

In many cases, Encoding has the potential to defuse attacks that rely on lack of input validation.
For example, if you use HTML entity encoding on user input before it is sent to a browser, it will
prevent most XSS attacks. However, simply preventing attacks is not enough - you must
perform Intrusion Detection in your applications. Otherwise, you are allowing attackers to
repeatedly attack your application until they find a vulnerability that you haven't protected
against. Detecting attempts to find these weaknesses is a critical protection mechanism.

PROOF OF VULNERABILITY:

We are able to insert any data to fields as city, Zip code, street while registering/editing
accounts.

[Raw | Params | Headers | Hex | 150N Beautifier
| I
T TR 1

[mavw | Headers | ex | 1sON Beautifier |

T

15 &
v

=] o) o] [Tvpeas: : Omatches (7 <[][=]][& 0 matches

Done 711 bytes | 212 millls

https://www.owasp.org/index.php?title=Interpreter_Injection&action=edit&redlink=1
https://www.owasp.org/index.php/Encoding
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Intrusion_Detection

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

Request body

Response

{"language":"en",
"timeZone":"utc",

"address": {

"street":"Qwe",

"zipCode":"code",

"city":"city",

"country":"UA"},"

affiliateMetadata":[

{"bannerTag":"","affiliate":""}],
"credential”:
"email":"attacker@example.com",
"password": "Weakéc"

,"username": "attacker@example.com"},
"currency":"EUR",
"subscriptions":

{"acceptEmailOffers":false,
"acceptSmsOffers":false,"

acceptTelesalesOffers":false,
"email":"attacker@example.com",
"phoneExtension":"+380"

, "phoneNumber™:"33212222"}

,"person”:{

"firstName":"John",
"lastName":"Doe"

, "dateOfBirth"
:"1995-03-04T00:00:00.000Z",

"gender":"Male"},

"legal":{"termsAndConditions":true},

"productMetadata”:{

"registeredFromProduct”:"common"}}

HTTP/1.1 202 Accepted

"token":
"6e3de379-6f2d-4246-a7dd-7c5c3a812c59"
}

RECOMMENDATIONS:

Every user input field should be validated both on front end and back end.

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Ch

eat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md

N | UNDER
333 | DEFENSE

] CyberSecurity Solutions
Protecting your business

Possible BREACH vulnerability

SEVERITY: Low
LOCATION:

o m.example5.co.uk
ISSUE DESCRIPTION:

This web application is potentially vulnerable to the BREACH attack.
An attacker with the ability to:

Inject partial chosen plaintext into a victim's requests

Measure the size of encrypted traffic

can leverage information leaked by compression to recover targeted parts of the
plaintext.

BREACH (Browser Reconnaissance & Exfiltration via Adaptive Compression of Hypertext) is a
category of vulnerabilities and not a specific instance affecting a specific piece of software.

To be vulnerable, a web application must:

e Be served from a server that uses HTTP-level compression
e Reflect user-input in HTTP response bodies
e Reflect a secret (such as a CSRF token) in HTTP response bodies

PROOF OF VULNERABILITY:

TestSSL results.

Testing vulnerabilities

CRIME, TLS (CVE-2012-4929) not vulnerable (OK)
BREACH (CVE-2013-3587) potentially NOT ok, uses gzip HTTP compression.
- only supplied "/" tested Can be ignored for static pages or if no secrets in the page

RECOMMENDATIONS:

The mitigations are ordered by effectiveness (not by their practicality - as this may differ from
one application to another).

Disabling HTTP compression

Separating secrets from user input

Randomizing secrets per request

Masking secrets (effectively randomizing by XORing with a random secret per request)
Protecting vulnerable pages with CSRF

Length hiding (by adding random number of bytes to the responses)

Rate-limiting the requests

N | UNDER
333 | DEFENSE

~=d § CyherSecurity Solutions
Protecting your business

Possible BEAST vulnerability

SEVERITY: Low
LOCATION:

m.example5.co.uk
m.example4.com
m.examplel.com
m.example2.com

m.example3.com

ISSUE DESCRIPTION:

The SSL protocol, as used in certain configurations in Microsoft Windows and Microsoft
Internet Explorer, Mozilla Firefox, Google Chrome, Opera, and other products, encrypts data by
using CBC mode with chained initialization vectors, which allows man-in-the-middle attackers
to obtain plaintext HTTP headers via a blockwise chosen-boundary attack (BCBA) on an HTTPS
session, in conjunction with JavaScript code that uses (1) the HTML5 WebSocket API, (2) the
Java URLConnection API, or (3) the Silverlight WebClient API, aka a "BEAST" attack.

PROOF OF VULNERABILITY:
TestSSL results.

Testing vulnerabilities

LOGJAM (CVE-2015-4000), experimental not vulnerable (OK): no DH EXPORT ciphers, no
DH key detected
BEAST (CVE-2011-3389) TLS1: ECDHE-RSA-AES128-SHA

ECDHE -RSA-AES256-SHA
AES128-SHA AES256-SHA
VULNERABLE -- but also supports higher
protocols TLSvl.1 TLSv1l.2 (likely mitigated)

RECOMMENDATIONS:

Disable TLS 1.0 and have users connect using TLS 1.1 or TLS 1.2 protocols which are immune to
the BEAST attack. TLS 1.0 is now considered insecure and disabling the protocol improves the
overall security.

REFERENCE:

https://www.acunetix.com/blog/articles/tls-ssl-cipher-hardening

https://www.acunetix.com/blog/articles/tls-ssl-cipher-hardening

N | UNDER
333 | DEFENSE

~= [CyberSecurity Solutions
Protecting your business

Possible LUCKY13 vulnerability

SEVERITY: Low
LOCATION:

m.example5.co.uk
m.example4.com
m.examplel.com

m.example2.com

m.example3.com

ISSUE DESCRIPTION:

The TLS protocol 1.1 and 1.2 and the DTLS protocol 1.0 and 1.2, as used in OpenSSL, Open)DK,
PolarSSL, and other products, do not properly consider timing side-channel attacks on a MAC
check requirement during the processing of malformed CBC padding, which allows remote
attackers to conduct distinguishing attacks and plaintext-recovery attacks via statistical analysis
of timing data for crafted packets, aka the "Lucky Thirteen" issue.

PROOF OF VULNERABILITY:

TestSSL results.

Testing vulnerabilities

BEAST (CVE-2011-3389) TLS1: ECDHE-RSA-AES128-SHA
ECDHE -RSA-AES256-SHA
AES128-SHA AES256-SHA
VULNERABLE -- but also supports higher
protocols TLSvl.1 TLSv1l.2 (likely mitigated)

LUCKY13 (CVE-2013-0169), experimental potentially VULNERABLE, uses cipher block
chaining (CBC) ciphers with TLS. Check patches
RC4 (CVE-2013-2566, CVE-2015-2808) no RC4 ciphers detected (OK)

RECOMMENDATIONS:
Avoid using TLS in CBC-mode and to switch to using AEAD algorithms.
REFERENCE:

https://blog.cloudflare.com/new-ssl-vulnerabilities-cloudflare-users-prot/

Confidential 14
API Penetration Testing Report for [CLIENT] Revised 15.03.2019

https://blog.cloudflare.com/new-ssl-vulnerabilities-cloudflare-users-prot/

N | UNDER
333 | DEFENSE

~=d § CyherSecurity Solutions
Protecting your business

Clickjacking

SEVERITY: Low

LOCATION:
e m.example5.co.uk
e m.example4.com
e m.examplel.com
e m.example2.com

e m.example3.com
ISSUE DESCRIPTION:

Clickjacking, also known as a "Ul redress attack”, is when an attacker uses multiple transparent
or opaque layers to trick a user into clicking on a button or link on another page when they
were intending to click on the top level page. Thus, the attacker is "hijacking” clicks meant for
their page and routing them to another page, most likely owned by another application,
domain, or both.

PROOF OF VULNERABILITY:

Html code which creates iframe of the website.

<html>
<head>
<title>Clickjack test page</title>
</head>
<body>
<p>Website is vulnerable to clickjacking!</p>
<iframe src="https://examplel.com/" width="600" height="300"></iframe>
</body>
</html>

(

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

D

As a result it's possible to create iframe of the website.

& > C | © File| fileyy) _ /Desktop/untitled.html

Website is vulnerable to clickjacking!

RECOMMENDATIONS:
There are two main ways to prevent clickjacking:

e Sending the proper Content Security Policy (CSP) frame-ancestors directive response
headers that instruct the browser to not allow framing from other domains. (This
replaces the older X-Frame-Options HTTP headers.)

e Employing defensive code in the Ul to ensure that the current frame is the most top
level window.

REFERENCE:

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

Confidential 16
API Penetration Testing Report for [CLIENT] Revised 15.03.2019

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

Outdated components
vulnerabilities

SEVERITY: Low

LOCATION:

e www.m.example4.com
e www.m.example5.co.uk

with known

e https://subdomain.example6.com/wp-json/ (out of scope)

ISSUE DESCRIPTION:

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

(

)

t

When new vulnerabilities are discovered in software, it's important to apply patches and
update to a version of the software for which the vulnerability is fixed. Attackers can use
known vulnerabilities, so security patches should be deployed as soon as they are available.

We have been able to find outdated version of Angular and Nginx services which are exposed

for several known vulnerabilities.

PROOF OF VULNERABILITY:

Vulnerability in angular]S:
https://snyk.io/test/npm/angular/1.6.6

Analytics
4 Google Analytics
JavaScript Framework

@ AngulardS 166

‘ Zone.js

Miscellaneous

& webpack

Tag Manager

™ Google Tag Manager

Vulnerability in Lodash and Angular build:
https://snyk.io/test/npm/lodash/4.17.4

https://snyk.io/test/npm/@bizappframework/angular-build

Analytics
“ Google Analytics
JavaScript Framework

Q Angular 7.01

Zone.js
& j

Miscellaneous

& webpack

Tag Manager

@ Google Tag Manager
JavaScript Libraries

Lodash 4.17.4

Confidential

API Penetration Testing Report for [CLIENT]

17
Revised 15.03.2019

https://snyk.io/test/npm/angular/1.6.6
https://snyk.io/test/npm/lodash/4.17.4

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

/,

Vulnerable Apache server:

https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-66/version_id-25282
5/Apache-Http-Server-2.4.33.html

£\ Response from

| Forward || Drop | | Interceptison | | Action

j Raw I Headers I Hex I HTML] Render]

HTTP/1.1 301 Moved Permanently

Date: Fri, 15 Mar 2019 12:40:17 GMT
Strict-Transport-Security: max-age=3153600;
Location:

Content-Length: 335

Connection: close

Content-Type: text/html; charset=1s0-8859-1
Vary: Accept-Encoding

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<t1tle>301 Moved Permanently</title=>

</head><body=>

<hl=Moved Permanently</hl=>

<p>The document has moved here.</p>
<hr>

<address=Apache/2.4.33 (Ubuntu) Server at Port 80</address=>
</body=</html=>

RECOMMENDATIONS:

Update outdated software and always keep it up-to-date in order to avoid the threat of known
vulnerabilities.

Insufficient Brute-force protection

SEVERITY: Low
LOCATION:

e m.examplel.com
ISSUE DESCRIPTION:

A system administrator uses a weak and guessable password which is easy to bruteforce and
gain control over administration functionality. Obvious and easy to remember passwords can
also be brute forced easily.

There is no Brute-force protection mechanism on login page. Attackers can easily provide
brute-force attack to gain access to administrative console.

Confidential 18
API Penetration Testing Report for [CLIENT] Revised 15.03.2019

N | UNDER
333 | DEFENSE

—= | (yherSecurity Solutions
Protecting your business

RECOMMENDATIONS:
We strongly recommend to use long passwords that can’t be guessed easily.

It is recommended to use a challenge-response test to prevent automated submissions of the
login page. Tools such as the free reCAPTCHA can be used to require the user to enter a word
or solve a simple math problem to ensure the user is, in fact, a person.

Other way progressive delays technique may be used. With progressive delays, user accounts
are locked out for a set period of time after a few failed login attempts. The lock-out time
increases with each subsequent failed attempt. This prevents automated tools from performing
a brute force attack and effectively makes it impractical to perform such an attack.

Weak Lock out mechanism
SEVERITY: Low
LOCATION:

e /api/vl/single-sign-on-sessions/
ISSUE DESCRIPTION:

Account lockout mechanisms are used to mitigate brute force password guessing attacks.
Accounts are typically locked after 3 to 5 unsuccessful login attempts and can only be unlocked
after a predetermined period of time, via a Customer Support service or intervention by an
administrator. Account lockout mechanisms require a balance between protecting accounts
from unauthorized access and protecting users from being denied authorized access.

PROOF OF VULNERABILITY:

User account locked after 5 login attempts.

Login Error
Login request cannot be

processed. Please contact
Customer Support.

Confidential 19
API Penetration Testing Report for [CLIENT] Revised 15.03.2019

N | UNDER
333 | DEFENSE

- CyberSecurity Solutions
Protecting your business

RECOMMENDATIONS:

Apply account unlock mechanisms depending on the risk level. In order from lowest to highest
assurance:

Time-based lockout and unlock.

Self-service unlock (sends unlock email to registered email address).
Manual administrator unlock.

Manual administrator unlock with positive user identification.

Weak password policy

SEVERITY: Low
LOCATION:

e /en/open-account?product=common
e /api/vl/customerregistrationtokens

ISSUE DESCRIPTION:

The most common web application security weakness is the failure to properly validate input
from the client or environment. This weakness leads to almost all of the major vulnerabilities in
applications, such as Interpreter Injection, locale/Unicode attacks, file system attacks and
buffer overflows. Data from the client should never be trusted for the client has every
possibility to tamper with the data.

In many cases, Encoding has the potential to defuse attacks that rely on lack of input
validation. For example, if you use HTML entity encoding on user input before it is sent to a
browser, it will prevent most XSS attacks. However, simply preventing attacks is not enough -
you must perform Intrusion Detection in your applications. Otherwise, you are allowing
attackers to repeatedly attack your application until they find a vulnerability that you haven't
protected against. Detecting attempts to find these weaknesses is a critical protection
mechanism.

https://www.owasp.org/index.php?title=Interpreter_Injection&action=edit&redlink=1
https://www.owasp.org/index.php/Encoding
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Intrusion_Detection

N | UNDER
333 | DEFENSE

~=> [CyberSecurity Solutions
Protecting your business

PROOF OF VULNERABILITY:

Create Account

Password1 5 -

Password strength: Fair

RECOMMENDATIONS:

According to OWASP Application Security Verification Standard, passwords should match next
criterias:

e User set passwords must be at least 12 characters in length.
e Unicode characters must be permitted in passwords.
e Password shouldn’t have composition rules limiting the type of characters permitted.

Also, according to NIST 800-63, passwords, called “Memorized Secrets”, shouldn’t be:

Passwords obtained from previous breach corpuses.

Dictionary words.

Repetitive or sequential characters (e.g. ‘aaaaaa’, 1234abcd’).

Context-specific words, such as the name of the service, the username, and derivatives

thereof.

21
Revised 15.03.2019

Confidential
API Penetration Testing Report for [CLIENT]

(

X

t

Reflected XSS in url address

SEVERITY: Low

LOCATION:

mnon

® subdomain.example7.com/download/de/?"">"<body><div><script>alert(1)</script></
e subdomain.example6.com/download/de/?"">"<body><div><script>alert(1)</script></

ISSUE DESCRIPTION:

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected
into otherwise benign and trusted websites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of a browser side script, to a different
end user. Flaws that allow these attacks to succeed are quite widespread and occur anywhere
a web application uses input from a user in the output it generates without validating or

encoding it.

Reflected attacks are those where the injected script is reflected off the web server, such as

in

an error message, search result, or any other response that includes some or all of the input
sent to the server as part of the request. Reflected attacks are delivered to victims via another
route, such as in an email message, or on some other website. When a user is tricked into
clicking on a malicious link, submitting a specially crafted form, or even just browsing to a
malicious site, the injected code travels to the vulnerable web site, which reflects the attack

back to the user’'s browser. The browser then executes the code because it came from
"trusted" server.

PROOF OF VULNERABILITY:

Request

a

GET
/download/de/?"'"">"<body><div><script>alert(localStorage.getItem('authReducer')</script>
</div><img%20src="x"'%20onerror="alert(1)</body> HTTP/1.1

Host: subdomain.example6.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:65.0) Gecko/20100101
Firefox/65.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: close

Response

<!-- Open Graph -->
<meta property="og:title" content=""/> <meta property="og:type"
content="website"/>
<meta property="og:url"
content="https://subdomain.example6.com/download/de/?"'"">"<body><div><script>alert(local
Storage.getItem('authReducer')</script></div><img%20src="x"'%20onerror="alert(1)</body>"/
>

N | UNDER
332 | DEFENSE

—~= | (yherSecurity Solutions
Protecting your business

RECOMMENDATIONS:

Use verification and sanitization on both client and server side, For more detailed information,
please see the link below:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Informative Error Messages

SEVERITY: Informational
LOCATION:

e /api/vl/customerregistrationtokens
e https://subdomain.example6.com/wp-json

ISSUE DESCRIPTION:

During a penetration testing, we come up against some error codes generated from
applications or web servers. It's possible to cause these errors to be displayed by using a
particular requests, either specially crafted with tools or created manually. These errors
containing information about server and it's version.

Such information is very useful for hackers during their activities, because they reveal a lot of
information about databases, bugs, and other components directly linked with web
applications.

Do not expose sensitive information in error messages and server headers. Any system internal
information should be hidden from the user.

PROOF OF VULNERABILITY:

It's possible to cause these errors to be displayed by using a particular requests, either specially

Confidential 23
API Penetration Testing Report for [CLIENT] Revised 15.03.2019

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

\\\

>

-

crafted with tools or created manually.

Request

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

POST /api/vl/customerregistrationtokens HTTP/1.1

Host: m.example3.com

{"language":"en","timeZone" :"utc","address":{"street":"sad", "zipCode" :"qwe","city":"qwe"
,"country":"UA"}, "affiliateMetadata": [{"bannerTag":"", "affiliate":""}], "credential”:{"em
ail":"attacker@example.com","password"”:"Qwerty123456","username"”:"attacker@example.com"}
,"currency":"EUR", "subscriptions":{"acceptEmailOffers":false,"acceptSmsOffers":false, "ac
ceptTelesalesOffers"”:false,"email":"attacker@example.com", "phoneExtension":"+380", "phone
Number":"0911111111"}, "person” :{"firstName":"Test", "lastName":"Test", "dateOfBirth":"1990
-03-13T00:00:00.000Z", "gender" :"Male"}, "legal": {"termsAndConditions":true}, "productMetad

ata":{"registeredFromProduct":"common"}}

Response

HTTP/1.1 415 Unsupported Media Type
Cache-Control: no-cache

{
"message": "The request contains an entity body but no Content-Type header. The
inferred media type 'application/octet-stream' is not supported for this resource.”,
"exceptionMessage": "No MediaTypeFormatter is available to read an object of type

'MgaRegistrationRequest' from content with media type 'application/octet-stream'.",

"exceptionType": "System.Net.Http.UnsupportedMediaTypeException",

"stackTrace": " at System.Net.Http.HttpContentExtensions.ReadAsAsync[T](HttpContent
content, Type type, IEnumerable 1l formatters, IFormatterLogger formatterLogger,
CancellationToken cancellationToken)\r\n at
System.Web.Http.ModelBinding.FormatterParameterBinding.ReadContentAsync (HttpRequestMessa
ge request, Type type, IEnumerable 1 formatters, IFormatterLogger formatterLogger,
CancellationToken cancellationToken)"

}

Request parameters

("1, {"1":"e"}]

Response

{"code":"E_VALIDATION", "errors":[{"code":"Cannot deserialize the current JSON array
(e.g. [1,2,3]) into type
'xxX.Customers.Registration.WebApi.Models.Requests.MgaRegistrationRequest' because the
type requires a JSON object (e.g. {\"name\":\"value\"}) to deserialize correctly.\r\nTo
fix this error either change the JSON to a JSON object (e.g. {\"name\":\"value\"}) or
change the deserialized type to an array or a type that implements a collection
interface (e.g. ICollection, IList) like List<T> that can be deserialized from a JSON
array. JsonArrayAttribute can also be added to the type to force it to deserialize from
a JSON array.\r\nPath '', line 1, position 1.","field":"request"}]}

When reaching https://subdomain.example6.com/wp-json we noticed server version in
response.

N | UNDER
333 | DEFENSE

= § (CyberSecurity Solutions

Protecting your business

2\ Response from h

| Forward | | Drop | | Interceptison | | Action

J Raw I Headers I Hex I HTML I Render]

HTTP/1.1 301 Moved Permanently

Date: Fri, 15 Mar 2019 12:40:17 GMT
Strict-Transport-Security: max-age=3153600;
Location:

Content-Length: 335

Connection: close

Content-Type: text/html; charset=iso-8859-1
Vary: Accept-Encoding

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML 2.8//EN">
<html><head>
<t1tle>301 Moved Permanently</title>

</head><body>

<h1=Moved Permanently</hl=>

<p>The document has moved here.</p>
<hr>

<address>Apache/2.4.33 (Ubuntu) Server at Port 80</address>

</body></html>

A lot of links on https://subdomain.example6.com/wp-json/ are returning JSON data.

HTTP/1.1 200 OK

Date: Fri, 15 Mar 2019 12:41:23 GMT
Strict-Transport-Security: max-age=3153600;

X-Robots-Tag: noindex

Link: <https://subdomain.example6.com/wp-json/>; rel="https://api.w.org/"
X-Content-Type-Options: nosniff
Access-Control-Expose-Headers: X-WP-Total, X-WP-TotalPages
Access-Control-Allow-Headers: Authorization, Content-Type
Allow: GET

Connection: close

Content-Type: application/json; charset=UTF-8

Vary: Accept-Encoding

Content-Length: 52834

(L] non nw,n non

"name" :"subdomain", "description”:"Description”,"url”:"https:\/\/subdomain.example6.com"

, "home" :"https:\/\/subdomain.example6.com”,"gmt_offset":"0","timezone_string":"", "namesp
aces":["oembed\/1.0","wp\/v2"], "authentication":[], "routes":{"\/":{"namespace":"", "metho
ds":["GET"], "endpoints":[{"methods":["GET"],"args":{"context":{"required":false, "default
":"view"}}}]," _links":{"self":"https:\/\/subdomain.example6.com\/wp-json\/"}},"\/oembed\
/1.0":{"namespace"”:"oembed\/1.0", "methods":["GET"], "endpoints":[{"methods":["GET"], "args
":{"namespace":{"required":false, "default":"oembed\/1.0"}, "context":{"required":false,"d
efault":"view"}}}],"_links":{"self":"https:\/\/subdomain.example6.com\/wp-json\/oembed\/
1.0"}},"\/oembed\/1.0\/embed":{"namespace":"oembed\/1.0","methods":["GET"], "endpoints":[

"me

RECOMMENDATIONS

We recommend to configure web server to respond with generic error message, so that web
server will not reveal any sensitive information. For more details visit link below:
https://www.tecmint.com/hide-nginx-server-version-in-linux/

https://www.tecmint.com/hide-nginx-server-version-in-linux/

