
	
	

	

	

	

	

	

UnderDefense	

Application	Security	Audit		

for	Client	
	

Compliance	with	OWASP	ASVS	L1:	
	

Failed	

	

	

	

	

	

June	15,	2017	

	

	

Notice	

UnderDefense	has	made	every	reasonable	attempt	to	ensure	that	the	information	contained	within	this	report	is	correct,	current	and	properly	

sets	forth	the	findings	as	have	been	determined	to	date.	The	parties	acknowledge	and	agree	that	the	other	party	assumes	no	responsibility	for	

errors	that	may	be	contained	in	or	for	misinterpretations	that	readers	may	infer	from	this	document.	

	

UnderDefense	Confidential	 2	

Inside	this	report	

Executive summary ...3	

Summary of business risks ..4	

Findings overview ...6	

Findings for Client SaaS application ..7	

Findings for Client server ... 22	

Appendix A: Covered test cases according to OWASP ASVS Level 1 ... 28	

UnderDefense	Confidential	 3	

Executive summary
This	report	presents	the	results	of	the	security	assessment	for	Client	enrollment	applications	conducted	

as	a	part	of	product	excellence	and	certification	process.	This	assessment	was	performed	under	the	

auspices	of	two	certified	and	licensed	penetration	testers	employed	by	UnderDefense	during	June	1–15,	

2017.	

Results overview
The	test	uncovered	a	few	vulnerabilities	that	may	cause	compromise	user	data,	application	settings	and	

user	settings	modifications,	information	disclosure,	or	reputational	damage	for	company.	During	

penetration	testing,	UnderDefense	security	experts	found	3	high	risk,	14	medium	risk	vulnerabilities,	and	

4	low	severity	issues.	

The	"Detailed	Findings"	section	in	each	finding	aimed	at	helping	system/application	owners	to	recreate	

the	findings	by	following	the	steps	mentioned	in	the	section.	

Scope
Organization	 Client	

Application	 Client	SaaS	

Audit	type	 OWASP	Top	10	ASVS	L1	and		Manual	Penetration	Testing	

Asset	URL	 https://client.com		

Audit	period	 June	1–15,	2017	

Contact details
Reviewed	by	 John	Smith	

Prepared	by	 John	Smith,	Dow	Johns	

Security tools used for ASVS Level 1
• Burp	Suite	Pro	[Commercial	Edition]	

• Tenable	Nessus	[Commercial	Edition]	

• Acunetix	9	[Commercial	Edition]	

• Metasploit	Pro	[Commercial	Edition]	

• OWASP	Mantra	

• OWASP	Zap	

• Nmap	

• Sqlmap	

Project limitations
Testing	was	conducted	against	the	staging	environment	only.	

UnderDefense	Confidential	 4	

Summary of business risks
Using	high	risk	attacks,	it	is	possible	for	attacker	to	compromise	all	users	of	Client	SaaS	application.	

Combination	of	several	medium	and	low	risk	vulnerabilities	may	cause	serious	damage	to	the	integrity	

and	confidentiality	of	applications.	

High-level recommendation
The	application	requires	final	security	review	according	SDLC	best	practices	before	the	final	release,	

because	some	important	functionality	is	not	fully	implemented,	and	remediation	testing	is	required.		

It	is	recommended	to	use	web	application	firewall	to	filter	application	level	attacks	against	the	production	

environment.	

Methodology
UnderDefense	Application	Security	Assessment	Methodology	is	grounded	on	following	guides	and	

standards:	

• Pentest	Execution	Standard	

• SANS:	Conducting	a	Penetration	Test	on	an	Organization	

• SANS:	Network	Application	Security	Assessment	and	Ethical	Hacking	

• The	Open	Source	Security	Testing	Methodology	

Open	Web	Application	Security	Project	(OWASP)	is	an	industry	initiative	for	web	application	security.	

OWASP	has	identified	the	10	most	common	attacks	that	succeed	against	web	applications.	These	

comprise	the	OWASP	Top	10.	

UnderDefense	application	penetration	test	includes	all	the	items	in	the	OWASP	Top	10	and	more.		

The	penetration	tester	remotely	try	to	compromise	the	OWASP	Top	10	flaws.	The	flaws	listed	by	OWASP	

in	its	most	recent	Top	10	and	the	status	of	the	application	against	those	are	depicted	in	the	table	below.	

OWASP	ASVS	Level	1	is	typically	appropriate	for	applications	where	low	confidence	in	the	correct	use	of	

security	controls	is	required,	for	providing	a	quick	analysis	of	enterprise	applications,	or	for	assisting	in	

developing	a	prioritized	list	of	security	requirements	as	a	part	of	a	multiphase	effort.	Level	1	controls	can	

be	ensured	either	automatically	by	tools	or	simply	manually	without	access	to	source	code.	We	consider	

Level	1	the	minimum	required	for	all	applications.	Threats	to	the	application	will	most	likely	be	from	

attackers	who	are	using	simple	and	low	effort	techniques	to	identify	easy-to-find	and	easy-to-exploit	

vulnerabilities.	This	is	in	contrast	to	a	determined	attacker	who	will	spend	focused	energy	to	specifically	

target	the	application.		

If	the	data	processed	by	your	application	has	high	value,	you	would	rarely	want	to	stop	at	a	Level	1	

review.		

UnderDefense	Confidential	 5	

Performed tests
• All	set	of	applicable	OWASP	Top	10	Security	Tests	

• All	set	of	applicable	SANS	25	Security	Threats	

• All	set	of	applicable	from	OWASP	ASVS	Level	1	(see	Appendix	A	with	a	key	checklist)	

Criteria	Label	 	 Status	

Safe	against	popular	attacks	 Fails	criteria	

Protects	sensitive	data	during	transmission	 Meets	criteria	

Safeguards	passwords	 Meets	criteria	

Protects	against	password	guessing	 Fails	criteria	

Secure	Forgot	Password	Implementation	 Fails	criteria	

Insecure	configuration	settings	on	servers	accessible	directly	by	users	 Meets	criteria	

Sensitive	data	not	to	be	stored	on	client	 Meets	criteria	

Sensitive	data	not	hidden	in	pages	 Meets	criteria	

No	sensitive	data	included	in	error	messages	 Fails	criteria	

Code	obfuscation	for	secrets	 N/A	

Re-authentication	required	for	sensitive	activities	 Meets	criteria	

No	sensitive	data	in	requests	to	external	sites	 Meets	criteria	

Webserver	service	protected	against	known	vulnerabilities	 Meets	criteria	

No	sample	or	test	applications	 Meets	criteria	

No	sensitive	data	in	source	code	 N/A	

	

UnderDefense	Confidential	 6	

Findings overview
UnderDefense	security	experts	performed	manual	security	testing	according	to	OWASP	Web	Application	

Testing	Methodology,	which	demonstrate	the	following	results.	

Risk	level	 High	risk	 Medium	risk	 Low	risk	 Informational	

#	of	vulnerabilities	 3	 14	 4	 1	

Severity
• High	–	Direct	threat	to	key	business	processes.	

• Medium	–	Indirect	threat	to	key	business	processes	or	partial	threat	to	business	processes.	

• Low	–	No	direct	threat	exists.	Vulnerability	may	be	exploited	using	other	vulnerabilities.	

• Informational	–	This	finding	does	not	indicate	vulnerability,	but	states	a	comment	that	notifies	about	

design	flaws	and	improper	implementation	that	might	cause	a	problem	in	the	long	run.	

3

14

4

1

Findings	by	severity

High

Medium

Low

Informational

UnderDefense	Confidential	 7	

Findings for Client SaaS application
This	sections	covers	details	of	all	findings	for	Client	SaaS	application.	

Reflected Cross-Site Scripting
Issue	severity:	High	

Business	impact:	High	

Issue	description:	Cross-Site	Scripting	(XSS)	attacks	are	a	type	of	injection,	in	which	malicious	scripts	are	

injected	into	benign	and	trusted	web	sites.	XSS	attacks	occur	when	an	attacker	uses	a	web	application	to	

send	malicious	code,	generally	in	the	form	of	a	browser	side	script,	to	a	different	end	user.	Flaws	that	

allow	these	attacks	to	succeed	are	quite	widespread	and	occur	anywhere:	a	web	application	inserts	input	

from	a	user	into	the	output	without	validating	or	encoding	it.	

An	attacker	can	use	XSS	to	send	a	malicious	script	to	an	unsuspecting	user.	The	end	user’s	browser	has	no	

way	to	know	that	the	script	should	not	be	trusted,	and	will	execute	the	script.	Because	it	thinks	the	script	

came	from	a	trusted	source,	the	malicious	script	can	access	any	cookies,	session	tokens,	or	other	sensitive	

information	retained	by	the	browser	and	used	with	that	site.	These	scripts	can	even	rewrite	the	content	

of	the	HTML	page.	

Attacker	can	craft	an	URL	that	will	trigger	malicious	JavaScript	payload	to	steal	user	session,	redirect	user	

to	another	resource,	and	so	on.				

Vulnerable	URL:	

https://client.com/***?filter=%2Fzport%2Fdmd%2FDevices%2F%3E&depth=2&objid=192.168%252%22

%2F%3E%3Cscript%3Ealert%28document.cookie%29%3C%2Fscript%3E%3Ca%3D%22&submitted=true	

Script	is	successfully	triggered:	

	

Recommendations:	To	filter	user	input	sufficiently,	consider	XSS	Prevention	Cheat	Sheet.	

Stored Cross-Site Scripting
Issue	severity:	High	

Business	impact:	High	

UnderDefense	Confidential	 8	

Issue	description:	Stored	attacks	are	those	where	the	injected	script	is	permanently	stored	on	the	target	

servers,	such	as	in	a	database,	in	a	message	forum,	visitor	log,	comment	field,	and	so	on.	The	victim	then	

retrieves	the	malicious	script	from	the	server	when	it	requests	the	stored	information.	Stored	XSS	is	also	

sometimes	referred	to	as	Persistent	or	Type-I	XSS.	

Attacker	can	inject	malicious	JavaScript	code	into	page	(under	a	Manager	role),	which	will	be	reflected	

across	all	users	of	the	system.			

POST /Events/evclasses_router HTTP/1.1
Host: Client.com
Connection:	close	

Content-Length:	198	

Origin:	https://Client.com	

X-Requested-With:	XMLHttpRequest	

User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	

Chrome/50.0.2661.102	Safari/537.36	

Content-Type:	application/json	

Accept:	*/*	

Referer:	https://Client.com/***	

Accept-Encoding:	gzip,	deflate,	br	

Accept-Language:	uk-UA,uk;q=0.8,ru;q=0.6,en-US;q=0.4,en;q=0.2	

Cookie:	

beaker.session="556ab79ec31a6cf70a30a21ff225c2b4805aa19058ad3e3e284e4bb599e07e449076f1aa";	

ZAuthToken="58ad3e3e284e4bb599e07e449076f1aa";	***_update=1465473596.928	

	

{"action":"EventClassesRouter","method":"editEventClassDescription","data":[{"uid":"/***/License","desc

ription":"12345'"}],"type":"rpc","tid":101}	

UnderDefense	Confidential	 9	

Vulnerable	form.	

	

Request	with	malicious	payload.	

UnderDefense	Confidential	 10	

Payload	is	triggered	across	all	users.			

Recommendations:	To	filter	user	input	sufficiently,	consider	XSS	Prevention	Cheat	Sheet	or	use	

framework	specific	components	available.	

DOM-based Cross-Site Scripting
Issue	severity:	High	

Business	impact:	High	

Issue	description:	DOM-based	XSS	(or	as	it	is	called	in	some	texts,	“type-0	XSS”)	is	an	XSS	attack,	wherein	

the	attack	payload	is	executed	as	a	result	of	modifying	the	DOM	“environment”	in	the	victim’s	browser	

used	by	the	original	client	side	script,	so	that	the	client	side	code	runs	in	an	“unexpected”	manner.	That	

is,	the	page	itself	(the	HTTP	response)	does	not	change,	but	the	client	side	code,	which	is	contained	on	

the	page,	is	executed	differently	due	to	the	malicious	modifications	that	have	occurred	in	the	DOM	

environment.	

Attacker	can	inject	malicious	JavaScript	code	onto	page	(under	the	Manager	role)	on	the	Discover
Networks	page.	

UnderDefense	Confidential	 11	

SNMP	field	is	not	filtered	properly.	

Cookie is echoed successfully.

Recommendations:	To	filter	user	input	sufficiently,	consider	XSS	Prevention	Cheat	Sheet.	

UnderDefense	Confidential	 12	

UnderDefense	Confidential	 13	

Insufficient session expiration [CWE-613]
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	Session	is	active	after	more	than	50	hours	of	user	inactivity.	Insufficient	session	

expiration	weakness	is	a	result	of	poorly	implemented	session	management.	This	weakness	can	arise	on	

design	and	implementation	levels	and	can	be	used	by	attackers	to	gain	an	unauthorized	access	to	the	

application.	

When	handling	sessions,	web	developers	can	rely	either	on	server	tokens	or	generate	session	identifiers	

within	the	application.	Each	session	should	be	destroyed	after	the	user	clicks	the	Log off	button,	or	after	
a	certain	period	of	time	(called	timeout).	Unfortunately,	coding	errors	and	server	misconfigurations	may	

influence	session	handling	process,	which	can	result	in	an	unauthorized	access.		

Session	expiration	is	comprised	of	two	timeout	types:		

• Inactivity	–	such	timeout	is	the	amount	of	idle	time	allowed	before	the	session	is	invalidated.		

• Absolute	–	such	timeout	is	defined	by	the	total	amount	of	time	a	session	can	be	valid	without	re-

authentication.	

The	lack	of	proper	session	expiration	may	increase	the	likelihood	of	success	of	certain	attacks.	Long	

expiration	time	increases	an	attacker's	chance	of	successfully	guessing	a	valid	session	ID.	The	longer	the	

expiration	time,	the	more	concurrent	open	sessions	will	exist	at	any	given	time.	The	larger	the	pool	of	

sessions,	the	more	likely	it	will	be	for	an	attacker	to	guess	one	at	random.	Although	a	short	session	

inactivity	timeout	does	not	help	if	a	token	is	immediately	used,	the	short	timeout	helps	to	insure	that	the	

token	is	harder	to	capture	while	it	is	still	valid.	

Recommendations:	A	Web	application	should	invalidate	a	session	after	a	predefined	idle	time	has	

passed	(a	timeout)	and	provide	the	user	the	means	to	invalidate	their	own	session	(log	out);	this	helps	to	

keep		

the	lifespan	of	a	session	ID	as	short	as	possible	and	is	necessary	in	a	shared	computing	environment,	

where	more	than	one	person	has	unrestricted	physical	access	to	a	computer.		

UnderDefense	Confidential	 14	

Session fixation (WASC-37)
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	User	can	use	the	same	session	token	after	logout	or	password	change.	Attacker	can	

repeat	request	with	token	that	should	be	marked	as	invalidated.		

curl	-i	-s	-k		-X	'GET'	\	

				-H	'User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64;	rv:18.0)	Gecko/20100101	Firefox/18.0'	-H	'Referer:	

https://.Client.com/***?submitted=true'	\	

				-b	'j***=1464960334.259;	

beaker.session="1d1f9a946b96613b622171adeafe6bcfbbe8c4045650fc37ef7243ca9a1801a8be8bfeac";	

ZAuthToken="5650fc37ef7243ca9a1801a8be8bfeac"'	\	

				'https://	Client.com/***'	

Recommendations:	The	logout	function	should	be	prominently	visible	to	the	user,	explicitly	invalidate	a	

user’s	session	and	disallow	reuse	of	the	session	token.	Server	should	provide	new	session	id	to	user	

browser	after	logout.		

UnderDefense	Confidential	 15	

Cookie without Secure flag set
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	Session	cookie	beaker.session	is	set	without	Secure	flag.	Secure	flag	forces	browser	
not to send cookie	over	unsecure	channel	(use	HTTPS	instead	of	HTTP).	Beaker.session	cookie	is	the	
most	critical	and	the	only	one	that	is	required	to	execute	requests	to	a	server.	According	to	our	testing,	

the	rest	two	cookies	are	optional,	and	we	did	not	observe	any	server-side	validation	for	them.	

Proof of vulnerability

Recommendations:	Ensure	that	web	server	sets	Secure	flag	on	session	cookies.	

UnderDefense	Confidential	 16	

Verbose error log disclosures information about Client internals
Issue	severity:	Low	

Business	impact:	Medium	

Issue	description:	Sending	special	crafted	request	attacker	can	get	verbose	error	log,	which	may	reveal	

useful	information,	such	as	software	versions,	error	types,	and	so	on.	

Proof	of	vulnerability	

Request:	

GET /zport HTTP/1.1
Host: Client.com
Connection:	close	

Origin:	https://Client.com	

User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	

Chrome/50.0.2661.102	Safari/537.36	

Content-Type:	application/json	

Accept:	*/*	

Referer:	https://Client.com/***	/Dashboard	

Accept-Encoding:	gzip,	deflate,	br	

Accept-Language:	uk-UA,uk;q=0.8,ru;q=0.6,en-US;q=0.4,en;q=0.2	

Cookie:	

beaker.session="556ab79ec31a6cf70a30a21ff225c2b4805aa19058ad3e3e284e4bb599e07e449076f1aa";	

ZAuthToken="58ad3e3e284e4bb599e07e449076f1aa";	***_update=1465473596.928	

Response	with	verbose	error:	

	

Recommendations:	Ensure	that	server	does	not	reveal	any	useful	information	in	any	form,	even	as	a	

debug	info	in	error	logs.	

UnderDefense	Confidential	 17	

Open-redirect vulnerability
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	An	open	redirect	is	an	application	that	takes	a	parameter	and	redirects	a	user	to	the	

parameter	value	without	any	validation.	This	vulnerability	is	used	in	phishing	attacks	to	get	users	to	visit	

malicious	sites	without	realizing	it.	

Proof	of	vulnerability	

Request:	

POST http://google.com HTTP/1.1
Host: Client.com
Connection:	close	

Content-Length:	0	

Origin:	https://Client.com	

X-Requested-With:	XMLHttpRequest	

User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	

Chrome/***.102	Safari/537.36	

Content-Type:	application/json	

Accept:	*/*	

Referer:	https://Client.com/***/devices/10.***/***detail	

Accept-Encoding:	gzip,	deflate,	br	

Accept-Language:	uk-UA,uk;q=0.8,ru;q=0.6,en-US;q=0.4,en;q=0.2	

Cookie:	

beaker.session="878d18d2254d148ddb6bc7d217508be212786b2bc3d47ffc0c414ed080b12a694f356993";*

_update=1465199235.61;	*UserId=oeu1465209245134r0.752719618090913;	

***ments=%7B%222299272282%22%3A%22false%22%2C%222299580245%22%3A%22direct%22%2C%222

305520179%22%3A%22gc%22%7D;	***uckets=%7B%7D;	_ga=GA***;	

ZAuthToken="c3d47ffc0c414ed080b12a694f356993"	

Response	with	a	redirect	to	another	website:	

HTTP/1.1 301 Moved Permanently
Location: http://google.com/
Date:	Wed,	08	Jun	2016	09:24:47	GMT	

Content-Length:	0	

Content-Type:	text/plain;	charset=utf-8	

Connection:	close	

After	such	a	request,	browser	will	be	successfully	redirected	to	an	arbitrary	website.	

Recommendations: Ensure that server does not redirect client to untrusted domains.

UnderDefense	Confidential	 18	

Cookie without HTTPOnly flag set
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	Session	cookie	beaker.session	is	set	without	HTTPOnly	flag.	This	flag	ensures	that	an	
attacker	cannot	steal	cookie	with	Javascript	on	a	client	side.		

Proof	of	vulnerability	

Recommendations:	Ensure	that	web	server	sets	HTTPonly	flag	on	session	cookies.	

Password bruteforce is possible
Issue	severity:	Medium	

Business	impact:	Medium	

Issue description: https://Client.com/zport/***/login

Because	application	does	not	block	a	user	after	a	few	failed	login	attempts,	it	is	possible	to	enumerate	

passwords	using	the	login	form.	Attacker	can	harvest	user	credentials	and	have	unauthorized	access	to	

application	functionality	and	confidential	data.		

Proof	of	vulnerability:	Application	does	not	check	the	quantity	of	failed	requests	and	lets	user	in	upon	a	

successful	one.	Attacker	can	automate	this	attack	and	perform	password	bruteforcing	using	this	request.	

Vulnerable request:

UnderDefense	Confidential	 19	

POST /***/login HTTP/1.1
Host: Client.com
Connection:	close	

Content-Length:	131	

Cache-Control:	max-age=0	

Origin:	https://Client.com	

Upgrade-Insecure-Requests:	1	

User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/51.0.2704.84	Safari/537.36	

Content-Type:	application/x-www-form-urlencoded	

Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8	

Referer:	https://Client.com/***/login_form?came_from=https%3A//Client.com/***/	

Accept-Encoding:	gzip,	deflate,	br	

Accept-Language:	uk-UA,uk;q=0.8,ru;q=0.6,en-US;q=0.4,en;q=0.2	

Cookie:	***_update=1465906625.949	

	

came_from=https%3A%2F%2FClient.com%2F***%2F***%2F&submitted=true&fragment=&__ac_name=pentest02&__ac_password=passwo	

Recommendations:	Make	sure	that	username	is	blocked	for	some	time	after	several	failed	logins.	Block	

IP	address	after	several	same	requests	with	different	values.	Enable	captcha.	

Exponentially increase the amount of time a user has to wait between authentication
attempts until it reaches a rate that makes brute-forcing impractical (for example, 24
hours).
Explanation: (Common Weaknesses Enumeration ID: 307	
http://cwe.mitre.org/data/definitions/307)	

HTML form without CSRF protection
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	Cross-site	request	forgery,	also	known	as	a	one-click	attack	or	session	riding	

(abbreviated	as	CSRF	or	XSRF),	is	a	type	of	malicious	exploit	of	a	website,	whereby	unauthorized	

commands	are	transmitted	from	a	user	that	the	website	trusts.		

The	impact	of	this	vulnerability:	An	attacker	may	force	the	users	of	a	web	application	to	execute	

actions	of	the	attacker's	choosing.	A	successful	CSRF	exploit	can	compromise	end	user	data	and	operation	

in	case	of	normal	user.	If	the	targeted	end	user	is	the	administrator	account,	this	can	compromise	the	

entire	web	application.		

Proof of vulnerability: “Change email” request can be triggered without anti-CSRF token. An

attacker can trick user to successfully perform this request.

POST /***/pentest07 HTTP/1.1

UnderDefense	Confidential	 20	

Host: Client.com
Connection:	close	

Content-Length:	224	

Cache-Control:	max-age=0	

Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8	

Origin:	https://Client.com	

Upgrade-Insecure-Requests:	1	

User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	

Chrome/50.0.2661.102	Safari/537.36	

Content-Type:	application/x-www-form-urlencoded	

Referer:	https://Client.com/***/pentest07	

Accept-Encoding:	gzip,	deflate,	br	

Accept-Language:	uk-UA,uk;q=0.8,ru;q=0.6,en-US;q=0.4,en;q=0.2	

Cookie:	

beaker.session="878d18d2254d148ddb6bc7d217508be212786b2bc3d47ffc0c414ed080b12a694f356993"	

	

=editUserSettings.pt&email=%40inc.coma&pager=&defaultPageSize=40&net***=&timezone=
America%2FChicago&password=&sndpassword=&oldpassword=&***_editUserSettings%3Ameth
od=+Save+Settings+

Recommendations:	Check	if	this	form	requires	CSRF	protection	and	implement	CSRF	countermeasures	if	

necessary.	

An	anti-CSRF	token	is	a	session-specific	or	even	transaction-specific	random	string	appended	as	a	

parameter	to	important	transactions.	Upon	handling	the	client's	request,	the	server	ensures	that	the	

CSRF	token	is	the	value	expected	for	that	session/transaction.	If	the	token	is	not	correct,	then	the	

application	denies	the	transaction.	This	helps	protect	against	CSRF	because	each	request	will	have	at	least	

one	unique	parameter	that	an	attacker	cannot	know	ahead	of	time.	

Note	that	you	may	be	able	to	mitigate	the	risk	of	CSRF	by	using	an	alternative	user-specific	token,	such	as	

the	userid,	rather	than	a	specific	anti-CSRF	token.	

When	a	web	server	is	designed	to	receive	a	request	from	a	client	without	any	mechanism	for	verifying	

that	it	was	intentionally	sent,	then	it	might	be	possible	for	an	attacker	to	trick	a	client	into	making	an	

unintentional	request	to	the	web	server	which	will	be	treated	as	an	authentic	request.	This	can	be	done	

via	a	URL,	image	load,	XMLHttpRequest,	and	others,	and	can	result	in	data	disclosure	or	unintended	code	

execution	(Common	Weaknesses	Enumeration	ID:	352	-	http://cwe.mitre.org/data/definitions/352).	

UnderDefense	Confidential	 21	

Username enumeration
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	“Forgot	password”	functionality	response	identifies	if	a	username	is	already	

registered.	Attacker	can	launch	bruteforce	or	dictionary	attack	to	harvest	usernames	of	clients.	

The	application	should	not	leak	any	information—regarding	the	validity	of	the	username,	any	suspension	

of	the	account,	and	so	on—in	the	event	of	failed	responses	to	the	challenge.	

Recommendations:	Provide	less	verbose	responses	in	the	“Forgot	password”	functionality.	Make	sure	

that	security	question	value	is	checked	properly.	Block	IP	address	after	several	same	requests	with	

different	values.	Enable	captcha.	

No clickjacking protection
Issue	severity:	Low	

Business	impact:	Low	

Issue	description:	Clickjacking,	also	known	as	a	"UI	redress	attack",	is	when	an	attacker	uses	multiple	

transparent	or	opaque	layers	to	trick	a	user	into	clicking	a	button	or	a	link	on	another	page	when	they	

were	intending	to	click	the	top-level	page.	Thus,	the	attacker	is	"hijacking"	clicks	meant	for	their	page	and	

routing	them	to	another	page,	most	likely	owned	by	another	application,	domain,	or	both.	

Using	a	similar	technique,	keystrokes	can	also	be	hijacked.	With	a	carefully	crafted	combination	of	

stylesheets,	iframes,	and	text	boxes,	a	user	can	be	led	to	believe	they	are	typing	in	the	password	to	their	

email	or	bank	account,	but	are	instead	typing	into	an	invisible	frame	controlled	by	the	attacker.	

Proof	of	vulnerability:		

Framed	page	example:	

UnderDefense	Confidential	 22	

Code snippet:

Recommendations: There are two main ways to prevent clickjacking:

• Sending	the	proper	X-Frame-Options	HTTP	response	headers	that	instruct	the	browser	to	not	allow	

framing	from	other	domains.	

• Employing	defensive	code	in	the	UI	to	ensure	that	the	current	frame	is	the	most	top-level	window.	

References:	

• https://www.owasp.org/index.php/Clickjacking		

• https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet		

Lack of Content-Security-Policy
Issue	severity:	Low	

Business	impact:	Low	

Issue	description:	The	new	Content-Security-Policy	HTTP	response	header	helps	you	reduce	XSS	risks	on	

modern	browsers	by	declaring	what	dynamic	resources	are	allowed	to	load	via	a	HTTP	Header.	

Recommendations:	Add	Content-Security-Policy	support	to	target	application.	

References:

• https://www.owasp.org/index.php/List_of_useful_HTTP_headers		

• http://content-security-policy.com/		

Lack of X-XSS-Protection
Issue	severity:	Low	

Business	impact:	Low	

Issue	description:	To	improve	the	security	of	your	site	against	some	types	of	cross-site	scripting	(XSS)	

attacks,	it	is	recommended	that	you	add	the	following	header	to	your	site:	

	X-XSS-Protection:	1;	mode=block	

Recommendations: Add X-XSS-Protection header to the target application.

Reference: https://www.owasp.org/index.php/List_of_useful_HTTP_headers

Findings for Client server

UnderDefense	Confidential	 23	

No brute-force protection
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	https://Client.com/#/login		

Application	allows	an	attacker	to	brute-force	passwords	against	Control	Center	application.	An	account	or	

attacker	IP	address	is	not	blocked	for	some	period	of	time.	More	advanced	solution	to	stop	brute-force	

attacks	is	to	use	captcha.	It	should	be	generated	in	case	of	brute-force	after	5	unsuccessful	login	

attempts.		

Proof	of	vulnerability	

	

Recommendations:	Enable	captcha	for	blocking	brute-force.	This	will	ensure	that	the	request	will	fail	

during	automated	attacks.	

UnderDefense	Confidential	 24	

Using components with known vulnerabilities
Issue	severity:	Medium	

Business	impact:	Medium	

Issue description: https://Client.com/#/login

CWE-937:	OWASP	Top	Ten	2013	Category	A9:	

1. Vulnerability	Details:	CVE-2014-4326	

Logstash	1.4.2	and	prior	versions	are	vulnerable	to	a	directory	traversal	attack	that	allows	an	attacker	

to	overwrite	files	on	the	server	running	Logstash.	

2. Vulnerability	Details:	CVE-2015-4152	

Elasticsearch	Logstash	1.0.14	through	1.4.x	before	1.4.2	allows	remote	attackers	to	execute	arbitrary	

commands	via	a	crafted	event	in	(1)	zabbix.rb	or	(2)	nagios_nsca.rb	in	outputs.	

https://packetstormsecurity.com/files/132233/Logstash-1.4.2-Directory-Traversal.html

CVSS	score	 7.5	

Confidentiality	impact	 Partial	(There	is	a	considerable	informational	disclosure.)	

Integrity	impact	 Partial	(Modification	of	some	system	files	or	information	is	possible,	but	the	

attacker	does	not	have	control	over	what	can	be	modified,	or	the	scope	of	what	

the	attacker	can	affect	is	limited.)	

Availability	impact	 Partial	(There	is	reduced	performance	or	interruptions	in	resource	availability.)	

Access	complexity	 Low	(Specialized	access	conditions	or	extenuating	circumstances	do	not	exist.	Very	

little	knowledge	or	skill	is	required	to	exploit.)	

Authentication	 Not	required	(Authentication	is	not	required	to	exploit	the	vulnerability.)	

Gained	access	 None	

Vulnerability	type(s)	 Execute	code	

UnderDefense	Confidential	 25	

Proof	of	vulnerability	

curl	-i	-s	-k		-X	'GET'	\	

				-H	'User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	WOW64;	rv:18.0)	Gecko/20100101	Firefox/18.0'	-H	

'Referer:	https://Client.com/static/logview/'	\	

				-b	'token=ZSQw9+6f6lZlVxi5XWI0nSyP6qy0uTN62IKVbvK3qJw=;	username=pentest'	\	

				'https://Client.com/api/***/elastic/***	

Recommendations:	Users	that	currently	use	the	file	output	plugin	or	may	use	it	in	the	future	should	

upgrade	to	1.5.0	or	1.4.3.	This	will	address	the	vulnerability	and	preserve	file	output	functionality.	

Users	that	do	not	want	to	upgrade	can	address	the	vulnerability	by	disabling	the	file	output	plugin.	

Information leakage

UnderDefense	Confidential	 26	

Issue	severity:	Info	

Business	impact:	Info	

Issue	description:	https://Client.com/#/login		

An	information	leak	is	the	intentional	or	unintentional	disclosure	of	information	that	either	(1)	is	regarded	

as	sensitive	within	the	product's	own	functionality,	such	as	a	private	message,	or	(2)	provides	information	

about	the	product	or	its	environment	that	could	be	useful	in	an	attack	but	is	normally	not	available	to	the	

attacker,	such	as	the	installation	path	of	a	product	that	is	remotely	accessible.		

Many	information	leaks	are	resultant	(for	example,	path	disclosure	in	PHP	script	error),	but	they	can	also	

be	primary	(for	example,	timing	discrepancies	in	crypto).	There	are	many	different	types	of	problems	that	

involve	information	leaks.	Their	severity	can	range	widely	depending	on	the	type	of	information	that	is	

leaked.	

Proof	of	vulnerability	

Responses	with	sensitive	info	in	template.	

UnderDefense	Confidential	 27	

Recommendations:	Ensure	that	templates	returned	to	the	client	do	not	contain	sensitive	information,	

which	may	be	useful	for	an	attacker.		

HSTS missing from HTTPS server
Issue	severity:	Medium	

Business	impact:	Medium	

Issue	description:	The	remote	HTTPS	server	is	not	enforcing	HTTP	Strict	Transport	Security	(HSTS).	The	

lack	of	HSTS	allows	downgrade	attacks,	SSL-stripping	man-in-the-middle	attacks,	and	weakens	cookie-

hijacking	protections.	

Recommendations:	Configure	the	remote	web	server	to	use	HSTS.	

UnderDefense	Confidential	 28	

Appendix A: Covered test cases according to OWASP ASVS Level 1

#	 Category	 Detail	 Level	1	

1.1	 V1.	Architecture,	design,	

and	threat	modelling	

Verify	that	all	the	needed	application	components	are	

identified	and	are	known.	

Covered	

2.1	 V2:	Authentication	

Verification	Requirements	

Verify	that	all	pages	and	resources	by	default	require	

authentication	except	those	specifically	intended	to	be	

public	(principle	of	complete	mediation).	

Covered	

2.2	 V2:	Authentication	

Verification	Requirements	

Verify	that	all	password	fields	do	not	echo	the	user’s	

password	when	it	is	entered.	

Covered	

2.4	 V2:	Authentication	

Verification	Requirements	

Verify	that	all	authentication	controls	are	enforced	on	

the	server	side.	

Covered	

2.6	 V2:	Authentication	

Verification	Requirements	

Verify	that	all	authentication	controls	fail	securely	to	

ensure	attackers	cannot	log	in.	

Covered	

2.7	 V2:	Authentication	

Verification	Requirements	

Verify	that	password	entry	fields	allow	or	encourage	

the	use	of	passphrases,	and	do	not	prevent	long	

passphrases/highly	complex	passwords	from	being	

entered.	

Covered	

2.8	 V2:	Authentication	

Verification	Requirements	

Verify	all	account	identity	authentication	functions	

(such	as	update	profile,	forgot	password,	disabled/lost	

token,	help	desk	or	IVR)	that	might	regain	access	to	the	

account	are	at	least	as	resistant	to	attack	as	the	primary	

authentication	mechanism.	

Covered	

2.9	 V2:	Authentication	

Verification	Requirements	

Verify	that	the	change	password	functionality	includes	

the	old	password,	the	new	password,	and	a	password	

confirmation.	

Covered	

2.16	 V2:	Authentication	

Verification	Requirements	

Verify	that	credentials	are	transported	using	a	suitable	

encrypted	link	and	that	all	pages/functions	that	require	

a	user	to	enter	credentials	are	done	so	using	an	

encrypted	link.	

Covered	

2.17	 V2:	Authentication	

Verification	Requirements	

Verify	that	the	forgotten	password	function	and	other	

recovery	paths	do	not	reveal	the	current	password	and	

that	the	new	password	is	not	sent	in	clear	text	to	the	

user.	

Covered	

2.18	 V2:	Authentication	

Verification	Requirements	

Verify	that	information	enumeration	is	not	possible	via	

login,	password	reset,	or	forgot	account	functionality.	

Covered	

UnderDefense	Confidential	 29	

#	 Category	 Detail	 Level	1	

2.19	 V2:	Authentication	

Verification	Requirements	

Verify	that	there	are	no	default	passwords	in	use	for	

the	application	framework	or	any	components	used	by	

the	application	(such	as	“admin/password”).	

Covered	

2.20	 V2:	Authentication	

Verification	Requirements	

Verify	that	request	throttling	is	in	place	to	prevent	

automated	attacks	against	common	authentication	

attacks	such	as	brute-force	attacks	or	denial	of	service	

attacks.	

Covered	

2.22	 V2:	Authentication	

Verification	Requirements	

Verify	that	forgotten	password	and	other	recovery	

paths	use	a	soft	token,	mobile	push,	or	an	offline	

recovery	mechanism.	

Covered	

2.24	 V2:	Authentication	

Verification	Requirements	

Verify	that	if	knowledge-based	questions	(also	known	

as	"secret	questions")	are	required,	the	questions	

should	be	strong	enough	to	protect	the	application.	

Covered	

2.27	 V2:	Authentication	

Verification	Requirements	

Verify	that	measures	are	in	place	to	block	the	use	of	

commonly	chosen	passwords	and	weak	passphrases.	

Covered	

2.30	 V2:	Authentication	

Verification	Requirements	

Verify	that	if	an	application	allows	users	to	

authenticate,	they	use	a	proven	secure	authentication	

mechanism.	

Covered	

2.32	 V2:	Authentication	

Verification	Requirements	

Verify	that	administrative	interfaces	are	not	accessible	

to	untrusted	parties.	

Covered	

3.1	 V3:	Session	Management	

Verification	Requirements	

Verify	that	there	is	no	custom	session	manager	or	that	

a	custom	session	manager	is	resistant	against	all	

common	session	management	attacks.	

Covered	

3.2	 V3:	Session	Management	

Verification	Requirements	

Verify	that	sessions	are	invalidated	when	the	user	logs	

out.	

Covered	

3.3	 V3:	Session	Management	

Verification	Requirements	

Verify	that	sessions	time	out	after	a	specified	period	of	

inactivity.	

Covered	

3.5	 V3:	Session	Management	

Verification	Requirements	

Verify	that	all	pages	that	require	authentication	have	

easy	and	visible	access	to	logout	functionality.	

Covered	

3.6	 V3:	Session	Management	

Verification	Requirements	

Verify	that	the	session	id	is	never	disclosed	in	URLs,	

error	messages,	or	logs.	This	includes	verifying	that	the	

application	does	not	support	URL	rewriting	of	session	

cookies.	

Covered	

3.7	 V3:	Session	Management	

Verification	Requirements	

Verify	that	all	successful	authentication	and	re-

authentication	generates	a	new	session	and	session	id.	

Covered	

UnderDefense	Confidential	 30	

#	 Category	 Detail	 Level	1	

3.12	 V3:	Session	Management	

Verification	Requirements	

Verify	that	session	ids	stored	in	cookies	have	their	path	

set	to	an	appropriately	restrictive	value	for	the	

application,	and	authentication	session	tokens	

additionally	set	the	“HttpOnly”	and	“secure”	attributes.	

Covered	

3.16	 V3:	Session	Management	

Verification	Requirements	

Verify	that	the	application	limits	the	number	of	active	

concurrent	sessions.	

Covered	

3.17	 V3:	Session	Management	

Verification	Requirements	

Verify	that	an	active	session	list	is	displayed	in	the	

account	profile	or	similar	of	each	user.	The	user	should	

be	able	to	terminate	any	active	session.	

Covered	

3.18	 V3:	Session	Management	

Verification	Requirements	

Verify	that	the	user	is	prompted	with	the	option	to	

terminate	all	other	active	sessions	after	a	successful	

change	password	process.	

Covered	

4.1	 V4:	Access	Control	

Verification	Requirements	

Verify	that	the	principle	of	least	privilege	exists:	users	

should	only	be	able	to	access	functions,	data	files,	URLs,	

controllers,	services,	and	other	resources,	for	which	

they	possess	specific	authorization.	This	implies	

protection	against	spoofing	and	elevation	of	privilege.	

Covered	

4.4	 V4:	Access	Control	

Verification	Requirements	

Verify	that	access	to	sensitive	records	is	protected,	such	

that	only	authorized	objects	or	data	is	accessible	to	

each	user	(for	example,	protect	against	users	tampering	

with	a	parameter	to	see	or	alter	another	user's	

account).	

Covered	

4.5	 V4:	Access	Control	

Verification	Requirements	

Verify	that	directory	browsing	is	disabled	unless	

deliberately	desired.	Additionally,	applications	should	

not	allow	discovery	or	disclosure	of	file	or	directory	

metadata,	such	as	Thumbs.db,	.DS_Store,	.git,	or	.svn	

folders.	

Covered	

4.8	 V4:	Access	Control	

Verification	Requirements	

Verify	that	access	controls	fail	securely.	 Covered	

4.9	 V4:	Access	Control	

Verification	Requirements	

Verify	that	the	same	access	control	rules	implied	by	the	

presentation	layer	are	enforced	on	the	server	side.	

Covered	

4.13	 V4:	Access	Control	

Verification	Requirements	

Verify	that	the	application	or	framework	uses	strong	

random	anti-CSRF	tokens	or	has	another	transaction	

protection	mechanism.	

Covered	

4.16	 V4:	Access	Control	

Verification	Requirements	

Verify	that	the	application	correctly	enforces	context-

sensitive	authorization	so	as	to	not	allow	unauthorized	

manipulation	by	means	of	parameter	tampering.	

Covered	

UnderDefense	Confidential	 31	

#	 Category	 Detail	 Level	1	

5.1	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	the	runtime	environment	is	not	susceptible	

to	buffer	overflows,	or	that	security	controls	prevent	

buffer	overflows.	

Covered	

5.3	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	server-side	input	validation	failures	result	in	

request	rejection	and	are	logged.	

Covered	

5.5	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	input	validation	routines	are	enforced	on	

the	server	side.	

Covered	

5.10	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	all	SQL	queries,	HQL,	OSQL,	NOSQL,	and	

stored	procedures,	calling	of	stored	procedures	are	

protected	by	the	use	of	prepared	statements	or	query	

parameterization;	thus,	not	susceptible	to	SQL	

injection.	

Covered	

5.11	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	the	application	is	not	susceptible	to	LDAP	

Injection	or	that	security	controls	prevent	LDAP	

Injection.	

Covered	

5.12	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	the	application	is	not	susceptible	to	OS	

Command	Injection	or	that	security	controls	prevent	OS	

Command	Injection.	

Covered	

5.13	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	the	application	is	not	susceptible	to	Remote	

File	Inclusion	(RFI)	or	Local	File	Inclusion	(LFI)	when	

content	is	used	that	is	a	path	to	a	file.	

Covered	

5.14	 V5:	Malicious	input	

handling	verification	

requirements	

Verify	that	the	application	is	not	susceptible	to	

common	XML	attacks,	such	as	XPath	query	tampering,	

XML	External	Entity	attacks,	and	XML	injection	attacks.	

Covered	

5.15	 V5:	Malicious	input	

handling	verification	

requirements	

Ensure	that	all	string	variables	placed	into	HTML	or	

other	web	client	code	is	either	properly	contextually	

encoded	manually,	or	utilize	templates	that	

automatically	encode	contextually	to	ensure	the	

application	is	not	susceptible	to	reflected,	stored	and	

DOM	Cross-Site	Scripting	(XSS)	attacks.	

Covered	

5.22	 V5:	Malicious	input	

handling	verification	

requirements	

Make	sure	untrusted	HTML	from	WYSIWYG	editors	or	

similar	are	properly	sanitized	with	an	HTML	sanitizer	

and	handle	it	appropriately	according	to	the	input	

validation	task	and	encoding	task.	

Covered	

UnderDefense	Confidential	 32	

#	 Category	 Detail	 Level	1	

7.2	 V7:	Cryptography	at	rest	

verification	requirements	

Verify	that	all	cryptographic	modules	fail	securely,	and	

errors	are	handled	in	a	way	that	does	not	enable	oracle	

padding.	

Covered	

7.7	 V7:	Cryptography	at	rest	

verification	requirements	

Verify	that	cryptographic	algorithms	used	by	the	

application	have	been	validated	against	FIPS	140-2	or	

an	equivalent	standard.	

Covered	

8.1	 V8:	Error	handling	and	

logging	verification	

requirements	

Verify	that	the	application	does	not	output	error	

messages	or	stack	traces	containing	sensitive	data	that	

could	assist	an	attacker,	including	session	id,	

software/framework	versions	and	personal	

information.	

Covered	

9.1	 V9:	Data	protection	

verification	requirements	

Verify	that	all	forms	containing	sensitive	information	

have	disabled	client-side	caching,	including	

autocomplete	features.	

Covered	

9.3	 V9:	Data	protection	

verification	requirements	

Verify	that	all	sensitive	data	is	sent	to	the	server	in	the	

HTTP	message	body	or	headers	(i.e.,	URL	parameters	

are	never	used	to	send	sensitive	data).	

Covered	

9.4	 V9:	Data	protection	

verification	requirements	

Verify	that	the	application	sets	appropriate	anti-caching	

headers	as	per	the	risk	of	the	application,	such	as	the	

following:	

Expires:	Tue,	03	Jul	2001	06:00:00	GMT	

Last-Modified:	{now}	GMT	

Cache-Control:	no-store,	no-cache,	must-revalidate,	

max-age=0	

Cache-Control:	post-check=0,	pre-check=0	

Pragma:	no-cache	

Covered	

9.9	 V9:	Data	protection	

verification	requirements	

Verify	that	data	stored	in	client	side	storage	(such	as	

HTML5	local	storage,	session	storage,	IndexedDB,	

regular	cookies	or	Flash	cookies)	does	not	contain	

sensitive	or	PII.	

Covered	

10.1	 V10:	Communications	

security	verification	

requirements	

Verify	that	a	path	can	be	built	from	a	trusted	CA	to	each	

Transport	Layer	Security	(TLS)	server	certificate,	and	

that	each	server	certificate	is	valid.	

Covered	

10.3	 V10:	Communications	

security	verification	

requirements	

Verify	that	TLS	is	used	for	all	connections	(including	

both	external	and	backend	connections)	that	are	

authenticated	or	that	involve	sensitive	data	or	

functions,	and	does	not	fall	back	to	insecure	or	

unencrypted	protocols.	Ensure	the	strongest	

alternative	is	the	preferred	algorithm.	

Covered	

UnderDefense	Confidential	 33	

#	 Category	 Detail	 Level	1	

10.11	 V10:	Communications	

security	verification	

requirements	

Verify	that	HTTP	Strict	Transport	Security	headers	are	

included	on	all	requests	and	for	all	subdomains,	such	as	

Strict-Transport-Security:	max-age=15724800;	

includeSubdomains	

Covered	

10.13	 V10:	Communications	

security	verification	

requirements	

Ensure	forward	secrecy	ciphers	are	in	use	to	mitigate	

passive	attackers	recording	traffic.	

Covered	

10.14	 V10:	Communications	

security	verification	

requirements	

Verify	that	proper	certification	revocation,	such	as	

Online	Certificate	Status	Protocol	(OSCP)	Stapling,	is	

enabled	and	configured.	

Covered	

10.15	 V10:	Communications	

security	verification	

requirements	

Verify	that	only	strong	algorithms,	ciphers,	and	

protocols	are	used,	through	all	the	certificate	hierarchy,	

including	root	and	intermediary	certificates	of	your	

selected	certifying	authority.	

Covered	

10.16	 V10:	Communications	

security	verification	

requirements	

Verify	that	the	TLS	settings	are	in	line	with	current	

leading	practice,	particularly	as	common	configurations,	

ciphers,	and	algorithms	become	insecure.	

Covered	

11.1	 V11:	HTTP	security	

configuration	verification	

requirements	

Verify	that	the	application	accepts	only	a	defined	set	of	

required	HTTP	request	methods,	such	as	GET	and	POST	

are	accepted,	and	unused	methods	(for	example,	

TRACE,	PUT,	and	DELETE)	are	explicitly	blocked.	

Covered	

11.2	 V11:	HTTP	security	

configuration	verification	

requirements	

Verify	that	every	HTTP	response	contains	a	content	

type	header	specifying	a	safe	character	set	(for	

example,	UTF-8,	ISO	8859-1).	

Covered	

11.5	 V11:	HTTP	security	

configuration	verification	

requirements	

Verify	that	the	HTTP	headers	or	any	part	of	the	HTTP	

response	do	not	expose	detailed	version	information	of	

system	components.	

Covered	

11.6	 V11:	HTTP	security	

configuration	verification	

requirements	

Verify	that	all	API	responses	contain	X-Content-Type-

Options:	nosniff	and	Content-Disposition:	attachment;	

filename="api.json"	(or	other	appropriate	filename	for	

the	content	type).	

Covered		

11.7	 V11:	HTTP	security	

configuration	verification	

requirements	

Verify	that	the	Content	Security	Policy	V2	(CSP)	is	in	use	

in	a	way	that	either	disables	inline	JavaScript	or	

provides	an	integrity	check	on	inline	JavaScript	with	CSP	

noncing	or	hashing.	

Covered	

UnderDefense	Confidential	 34	

#	 Category	 Detail	 Level	1	

11.8	 V11:	HTTP	security	

configuration	verification	

requirements	

Verify	that	the	X-XSS-Protection:	1;	mode=block	header	

is	in	place.	

Covered	

16.1	 V16:	Files	and	resources	

verification	requirements	

Verify	that	URL	redirects	and	forwards	only	allow	

whitelisted	destinations,	or	show	a	warning	when	

redirecting	to	potentially	untrusted	content.	

Covered	

16.2	 V16:	Files	and	resources	

verification	requirements	

Verify	that	untrusted	file	data	submitted	to	the	

application	is	not	used	directly	with	file	I/O	commands,	

particularly	to	protect	against	path	traversal,	local	file	

include,	file	mime	type,	and	OS	command	injection	

vulnerabilities.	

Covered	

16.3	 V16:	Files	and	resources	

verification	requirements	

Verify	that	files	obtained	from	untrusted	sources	are	

validated	to	be	of	expected	type	and	scanned	by	

antivirus	scanners	to	prevent	upload	of	known	

malicious	content.	

Covered	

16.4	 V16:	Files	and	resources	

verification	requirements	

Verify	that	untrusted	data	is	not	used	within	inclusion,	

class	loader,	or	reflection	capabilities	to	prevent	

remote/local	file	inclusion	vulnerabilities.	

Covered	

16.5	 V16:	Files	and	resources	

verification	requirements	

Verify	that	untrusted	data	is	not	used	within	cross-

domain	resource	sharing	(CORS)	to	protect	against	

arbitrary	remote	content.	

Covered	

16.8	 V16:	Files	and	resources	

verification	requirements	

Verify	the	application	code	does	not	execute	uploaded	

data	obtained	from	untrusted	sources.	

Covered	

16.9	 V16:	Files	and	resources	

verification	requirements	

Do	not	use	Flash,	Active-X,	Silverlight,	NACL,	client-side	

Java	or	other	client	side	technologies	not	supported	

natively	via	W3C	browser	standards.	

Covered	

17.1	 V17:	Mobile	verification	

requirements	

Verify	that	ID	values	stored	on	the	device	and	

retrievable	by	other	applications,	such	as	the	UDID	or	

IMEI	number	are	not	used	as	authentication	tokens.	

Covered	

17.2	 V17:	Mobile	verification	

requirements	

Verify	that	the	mobile	app	does	not	store	sensitive	data	

onto	potentially	unencrypted	shared	resources	on	the	

device	(for	example,	SD	card	or	shared	folders).	

Covered	

17.3	 V17:	Mobile	verification	

requirements	

Verify	that	sensitive	data	is	not	stored	unprotected	on	

the	device,	even	in	system	protected	areas	such	as	key	

chains.	

Covered	

UnderDefense	Confidential	 35	

#	 Category	 Detail	 Level	1	

17.7	 V17:	Mobile	verification	

requirements	

Verify	that	the	application	sensitive	code	is	laid	out	

unpredictably	in	memory	(for	example,	ASLR).	

Covered	

17.9	 V17:	Mobile	verification	

requirements	

Verify	that	the	app	does	not	export	sensitive	activities,	

intents,	content	providers,	and	so	on	for	other	mobile	

apps	on	the	same	device	to	exploit.	

Covered	

17.11	 V17:	Mobile	verification	

requirements	

Verify	that	the	app’s	exposed	activities,	intents,	content	

providers,	and	others	validate	all	inputs.	

Covered	

18.1	 V18:	Web	services	

verification	requirements	

Verify	that	the	same	encoding	style	is	used	between	

the	client	and	the	server.	

Covered	

18.2	 V18:	Web	services	

verification	requirements	

Verify	that	access	to	administration	and	management	

functions	within	the	Web	Service	Application	is	limited	

to	web	service	administrators.	

Covered	

18.3	 V18:	Web	services	

verification	requirements	

Verify	that	XML	or	JSON	schema	is	in	place	and	verified	

before	accepting	input.	

Covered	

18.4	 V18:	Web	services	

verification	requirements	

Verify	that	all	input	is	limited	to	an	appropriate	size	

limit.	

Covered	

18.5	 V18:	Web	services	

verification	requirements	

Verify	that	SOAP	based	web	services	are	compliant	with	

Web	Services-Interoperability	(WS-I)	Basic	Profile	at	

minimum.	

Covered	

18.6	 V18:	Web	services	

verification	requirements	

Verify	the	use	of	session-based	authentication	and	

authorization.	Avoid	the	use	of	static	"API	keys"	and	

similar.	

Covered	

18.7	 V18:	Web	services	

verification	requirements	

Verify	that	the	REST	service	is	protected	from	Cross-Site	

Request	Forgery.	

Covered	

19.1	 V19.	Configuration	 All	components	should	be	up	to	date	with	proper	

security	configuration(s)	and	version(s).	This	should	

include	removal	of	unneeded	configurations	and	

folders	such	as	sample	applications,	platform	

documentation,	and	default	or	example	users.	

Covered	

UnderDefense	Confidential	 36	

	

	

	

	

